
# Geometry and Uncertainty in Deep Learning for Computer Vision

Alex Kendall, University of Cambridge, March 2017 @alexgkendall @ alexgkendall.com agk34@cam.ac.uk

### Why is uncertainty important?

#### Bayesian SegNet for probabilistic scene understanding

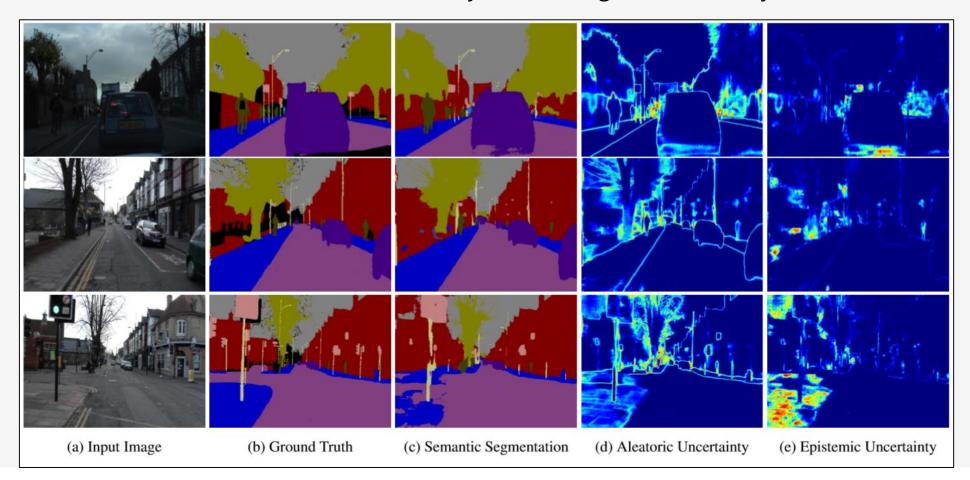


#### Input Image Semantic Segmentation Uncertainty

#### Outline of Talk

- 1. What **uncertainty** can we model with deep learning and what are the benefits?
- How do we model uncertainty using **Bayesian deep learning** for regression and classification tasks?
- 3. Why should we formulate deep learning models for vision which leverage our knowledge of **geometry**?

## Uncertainty


#### What kind of uncertainty can we model?

#### 1 *Epistemic* uncertainty

- Measures what you're model doesn't know
- Can be explained away by unlimited data
- 2 Aleatoric uncertainty
  - Measures what you can't understand from the data
  - Can be explained away by unlimited sensing

#### What kind of uncertainty can we model?

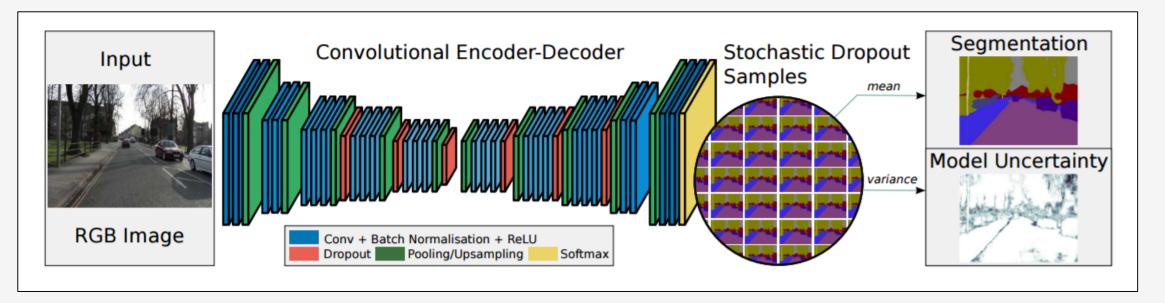
*Epistemic* uncertainty is *modeling* uncertainty *Aleatoric* uncertainty is *sensing* uncertainty



#### Modeling Uncertainty with Bayesian Deep Learning



Deep learning is required to achieve state of the art results in computer vision applications but doesn't provide uncertainty estimates.


- Bayesian neural networks are a framework for understanding uncertainty in deep learning
- They have **distributions over network parameters** (rather than deterministic weights)
- Traditionally they have been **tricky to scale**

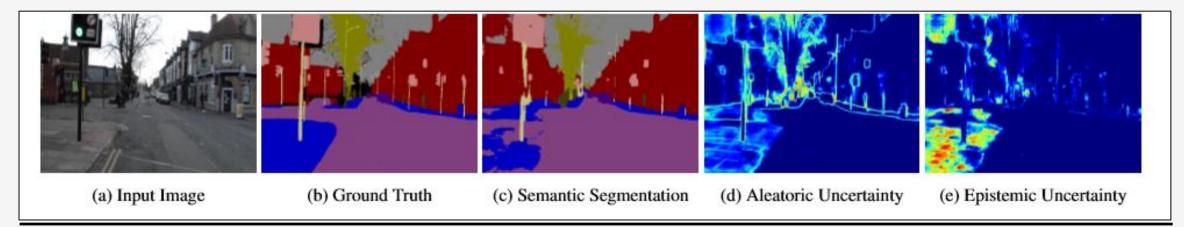
#### Modeling Epistemic Uncertainty with Bayesian Deep Learning

We can model epistemic uncertainty in deep learning models using

Monte Carlo dropout sampling at test time.

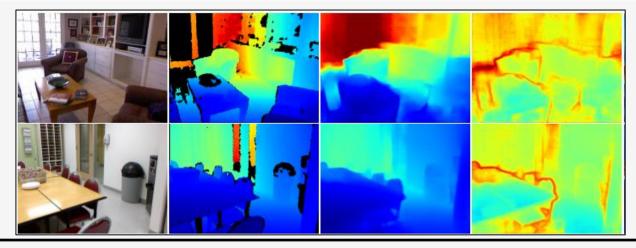
Dropout sampling can be interpreted as **sampling from a distribution over models**.




Alex Kendall, Vijay Badrinarayanan and Roberto Cipolla **Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding**. arXiv preprint arXiv:1511.02680, 2015.

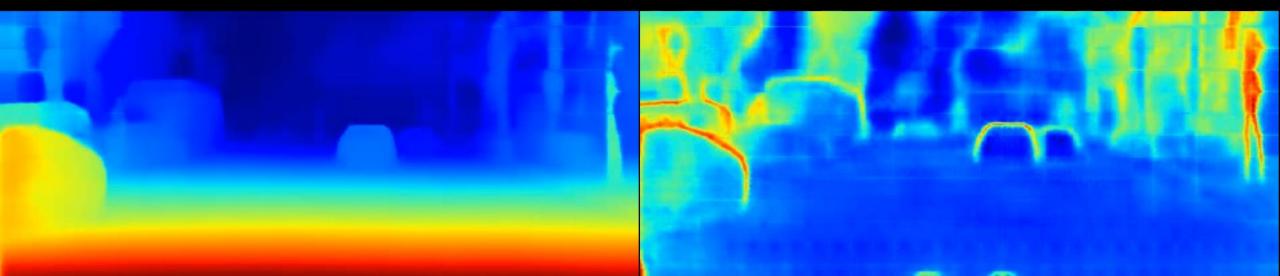
#### Modeling Aleatoric Uncertainty with Probabilistic Deep Learning

|                | Deep Learning                             | Probabilistic Deep Learning                                                                                                                           |
|----------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model          | $[\hat{y}] = f(x)$                        | $[\hat{y}, \hat{\sigma}^2] = f(x)$                                                                                                                    |
| Regression     | $Loss = \ y - \hat{y}\ ^2$                | $Loss = \frac{\ y - \hat{y}\ ^2}{2\hat{\sigma}^2} + \log\hat{\sigma}^2$                                                                               |
| Classification | $Loss = SoftmaxCrossEntropy(\hat{y}_{t})$ | $\hat{y}_{t} = \hat{y} + \epsilon_{t} \qquad \epsilon_{t} \sim N(0, \hat{\sigma}^{2})$ $Loss = \frac{1}{T} \sum_{t} SoftmaxCrossEntropy(\hat{y}_{t})$ |


#### Semantic Segmentation Performance on CamVid

| CamVid Results                       | IoU Accuracy |
|--------------------------------------|--------------|
| DenseNet (State of the art baseline) | 67.1         |
| + Aleatoric Uncertainty              | 67.4         |
| + Epistemic Uncertainty              | 67.2         |
| + Aleatoric & Epistemic              | 67.5         |




#### Monocular Depth Regression Performance

| NYU Depth Results                    | Rel. Error |
|--------------------------------------|------------|
| DenseNet (State of the art baseline) | 0.167      |
| + Aleatoric Uncertainty              | 0.149      |
| + Epistemic Uncertainty              | 0.162      |
| + Aleatoric & Epistemic              | 0.145      |





#### Input Video (Monocular)



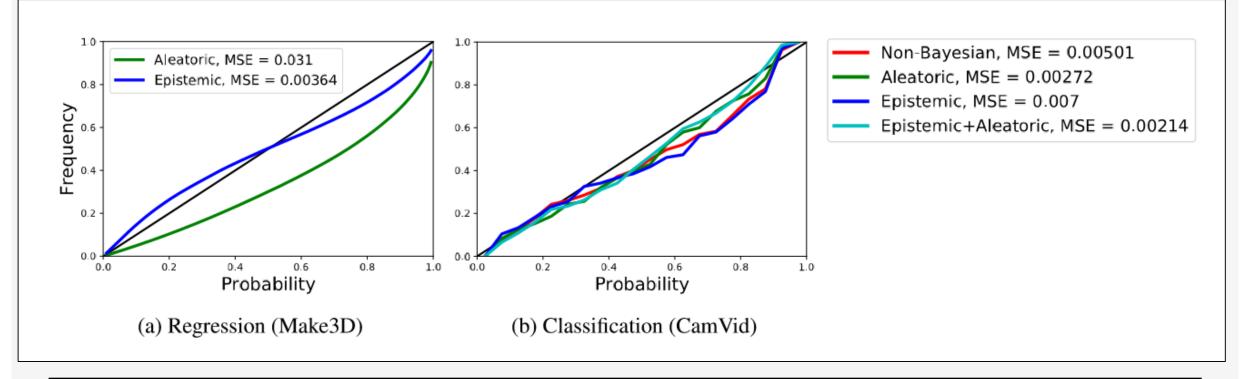
#### **Predicted Depth**



#### Aleatoric vs. Epistemic Uncertainty for Out of Dataset Examples

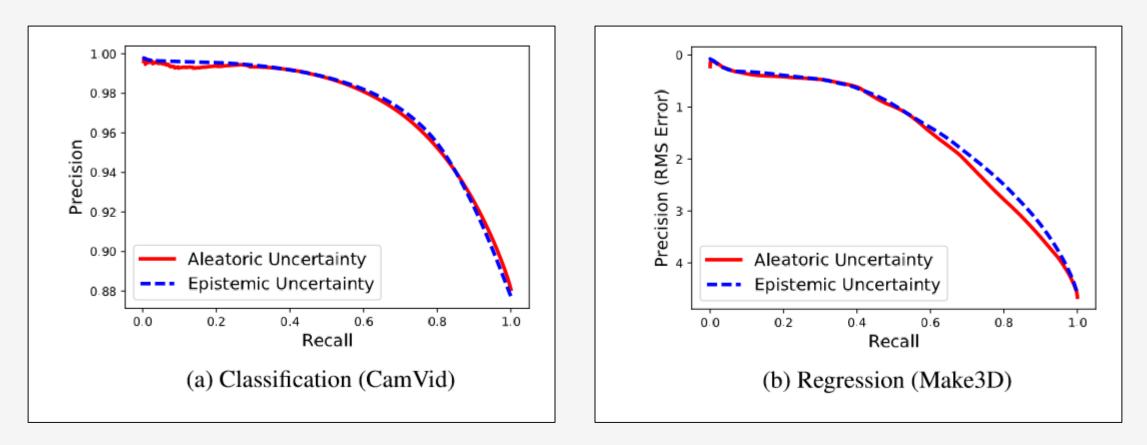
| Train<br>dataset | Test<br>dataset | RMS  | Aleatoric variance | Epistemic<br>variance |
|------------------|-----------------|------|--------------------|-----------------------|
| Make3D / 4       | Make3D          | 5.76 | 0.506              | 7.73                  |
| Make3D / 2       | Make3D          | 4.62 | 0.521              | 4.38                  |
| Make3D           | Make3D          | 3.87 | 0.485              | 2.78                  |
| Make3D / 4       | NYUv2           | -    | 0.388              | 15.0                  |
| Make3D           | NYUv2           |      | 0.461              | 4.87                  |




Aleatoric uncertainty remains constant while epistemic uncertainty increases for out of dataset examples!

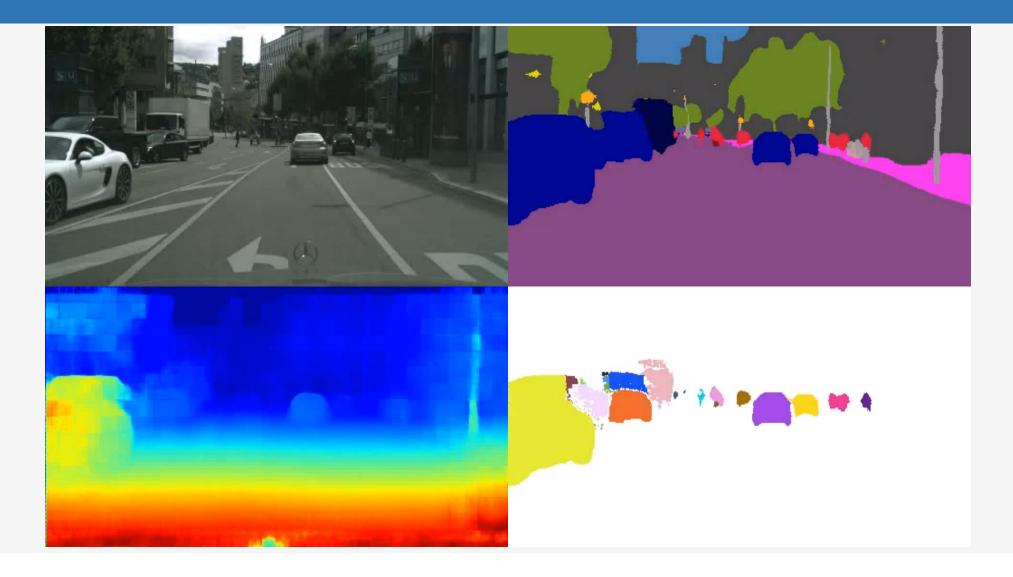
#### Uncertainty Benchmarks

- One reason why computer vision has progressed so rapidly is because we can benchmark and compare algorithms easily
- Often leaderboards rank prediction accuracy and algorithm speed
- Leaderboards should also rank algorithms probabilistically and quantify uncertainty accuracy


#### Calibration Plots

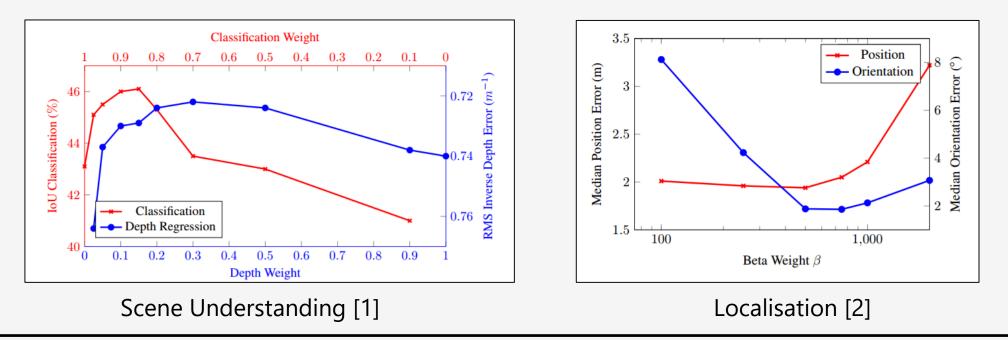
- For a prediction with probability p, the model should be correct with a frequency of p
- Perfect calibration corresponds to the line, y = x




#### Precision Recall Plots

• Uncertainty should correlate well with accuracy




Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017.

#### Putting it all Together: Multi-Task Learning



We want to simultaneously learn multiple tasks:  $Loss = \sum_i w_i L_i$ 

Task performance is very sensitive to choice of weights, so how do you choose??



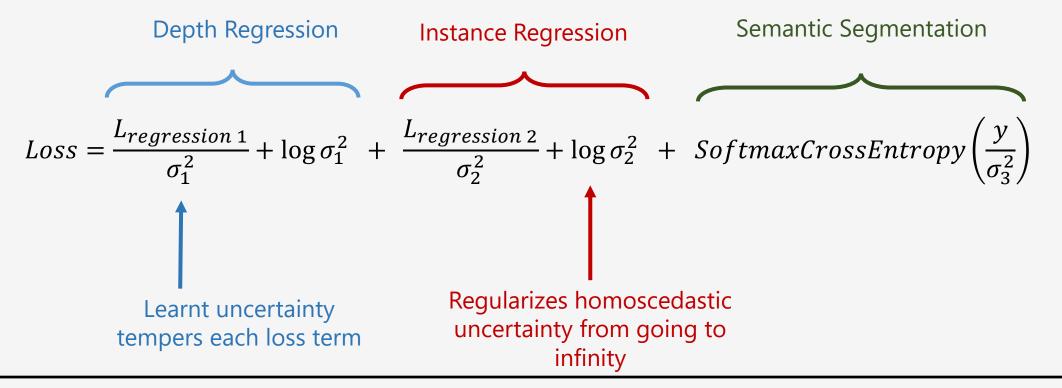
[1] Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.
 [2] Alex Kendall, Matthew Grimes and Roberto Cipolla PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

#### Types of Aleatoric Uncertainty

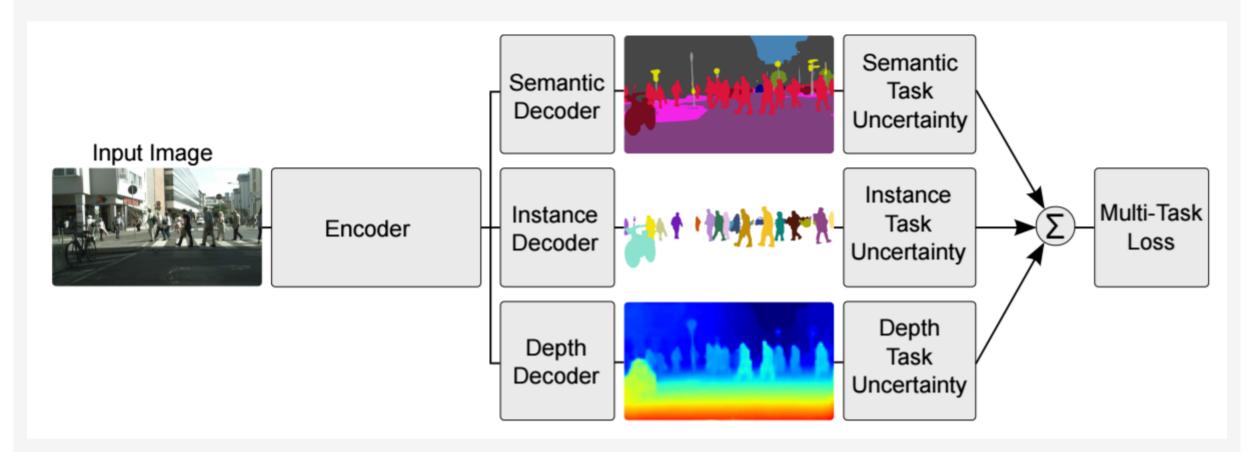
#### *Heteroscedastic* aleatoric uncertainty

• Data dependent aleatoric uncertainty




#### *Homoscedastic* aleatoric uncertainty

- Aleatoric uncertainty which doesn't depend on the data
- Task uncertainty

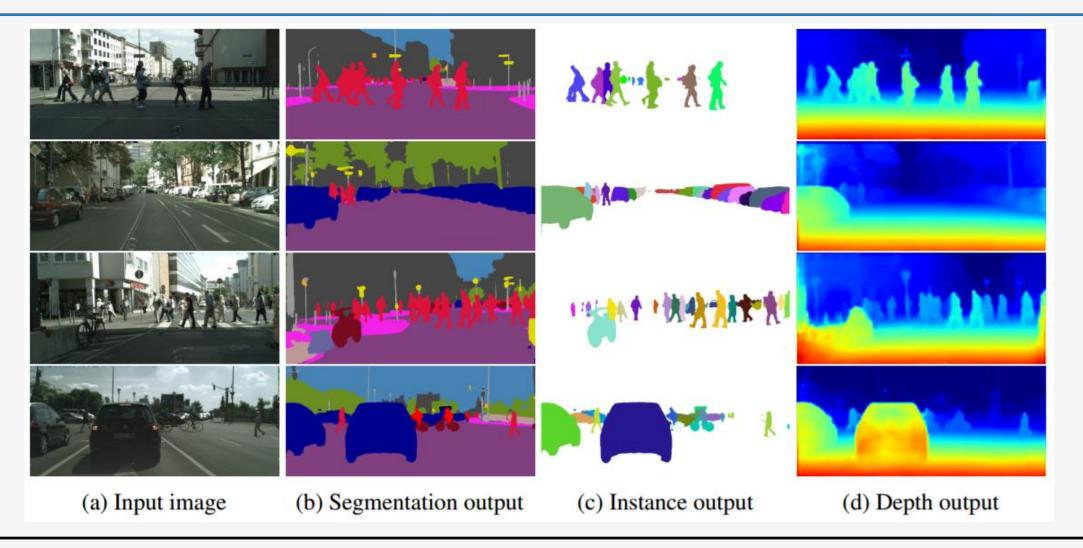

#### Combine Losses Using Homoscedastic Uncertainty

Homoscedastic uncertainty,  $\sigma^2$ , captures uncertainty of the entire task itself – not dependent on input data.

We propose to use this to learn a weighting for each loss term.



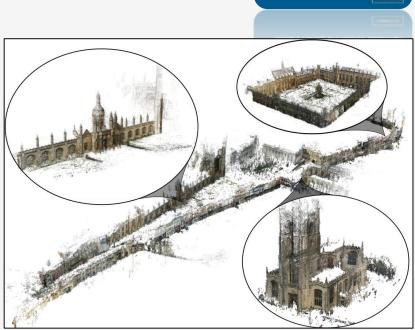
#### Multi Task Scene Understanding Model




#### Multitask Learning Results

- Homoscedastic uncertainty can learn the optimal weighting
- Multitask learning can improve performance compared with training separate models for each individual task

|                              | Ta           | sk Weig      | hts          | Classification | Instance         | Inverse Depth    |
|------------------------------|--------------|--------------|--------------|----------------|------------------|------------------|
| Loss                         | Cls.         | Inst.        | Depth        | IoU [%]        | RMS Error $[px]$ | RMS Error $[px]$ |
| Class only                   | 1            | 0            | 0            | 43.1%          | -                | -                |
| Instance only                | 0            | 1            | 0            | -              | 4.61             | -                |
| Depth only                   | 0            | 0            | 1            | -              | -                | 0.783            |
| Unweighted sum of losses     | 0.333        | 0.333        | 0.333        | 43.6%          | 3.92             | 0.786            |
| Approx. optimal weights      | 0.8          | 0.05         | 0.15         | 46.3%          | 3.92             | 0.799            |
| 2 task uncertainty weighting | ✓            | $\checkmark$ |              | 46.5%          | 3.73             | -                |
| 2 task uncertainty weighting | $\checkmark$ |              | $\checkmark$ | 46.2%          | -                | 0.714            |
| 2 task uncertainty weighting |              | $\checkmark$ | $\checkmark$ | -              | 4.06             | 0.744            |
| 3 task uncertainty weighting | ✓            | $\checkmark$ | $\checkmark$ | 46.6%          | 3.91             | 0.702            |

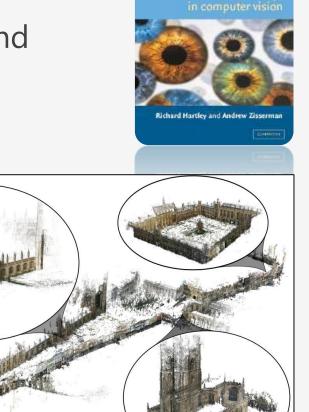

#### Qualitative Multitask Learning Results



## Geometry

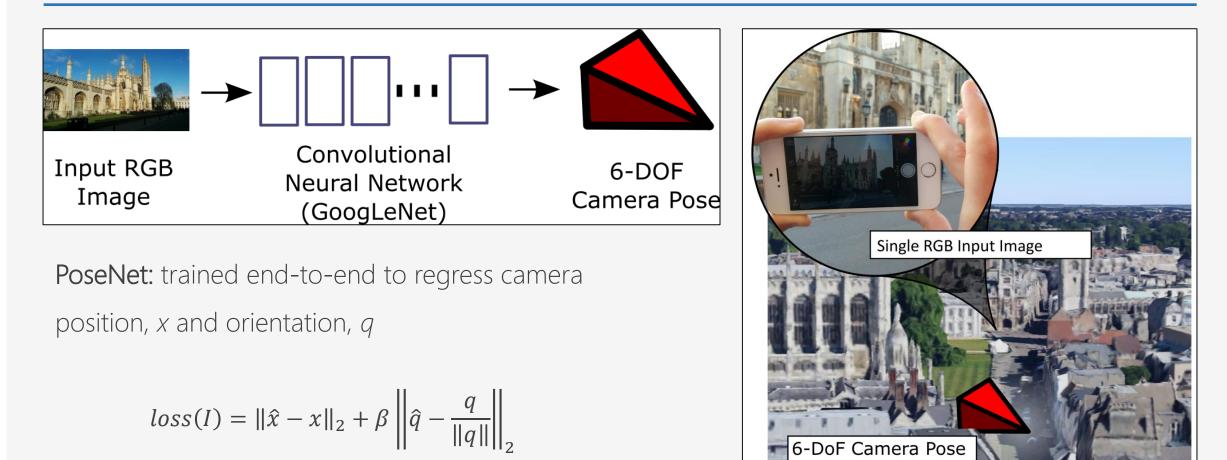
#### Geometry in Computer Vision?

- Geometry was once the most exciting topic in computer vision
- Now machine learning models are the solution to most tasks
- These black boxes can learn many representations with end-toend supervised learning
- Often naïve architectures are used




SCOND EDITE

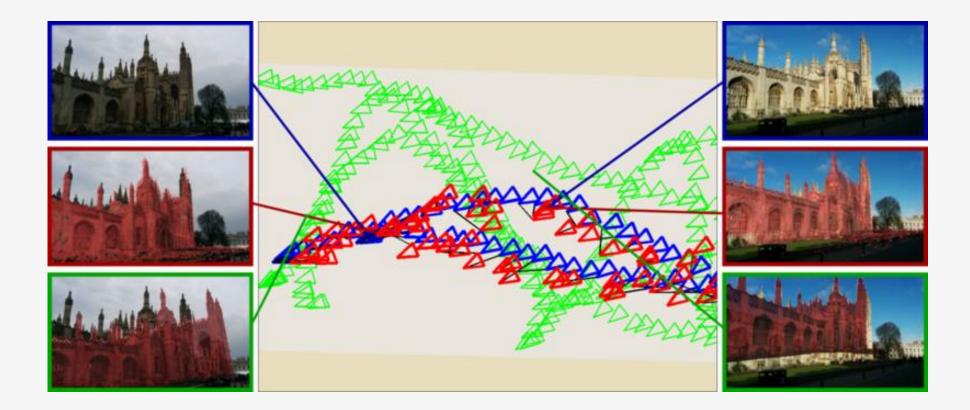
Multiple View


#### Geometry in Computer Vision?

- However, geometry provides a rich source of training data
- Motion, pose and depth can be leveraged for supervised and unsupervised training
- Geometric priors and architectural designs can significantly improve model performance



SCOND EDITE


#### Naïve deep learning approach to learning camera pose

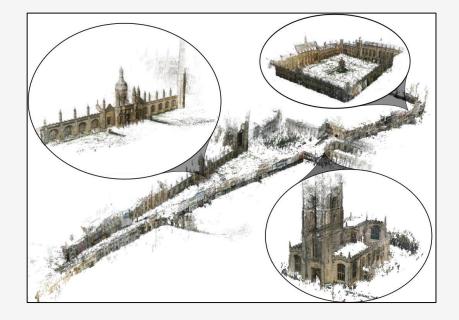


Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

#### Camera Pose Regression

training data in green, test data in blue, PoseNet results in red




Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

#### Learning camera pose, with geometry

Train with reprojection loss of 3-D geometry

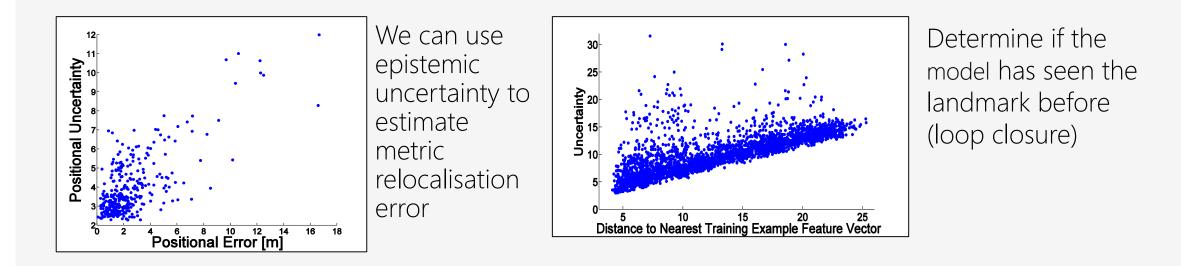
with predicted and ground truth camera poses.

$$loss(I) = \frac{1}{|\mathcal{G}'|} \sum_{g_i \in \mathcal{G}'} \left\| \pi(\mathbf{q}, \mathbf{x}, \mathbf{g_i}) - \pi(\mathbf{\hat{q}}, \mathbf{\hat{x}}, \mathbf{g_i}) \right\|_{\gamma}$$



Where  $\pi$  is the projection function of 3-D point  $g_i$ 

Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression with deep learning. CVPR, 2017 (to appear).


#### Camera Pose Regression

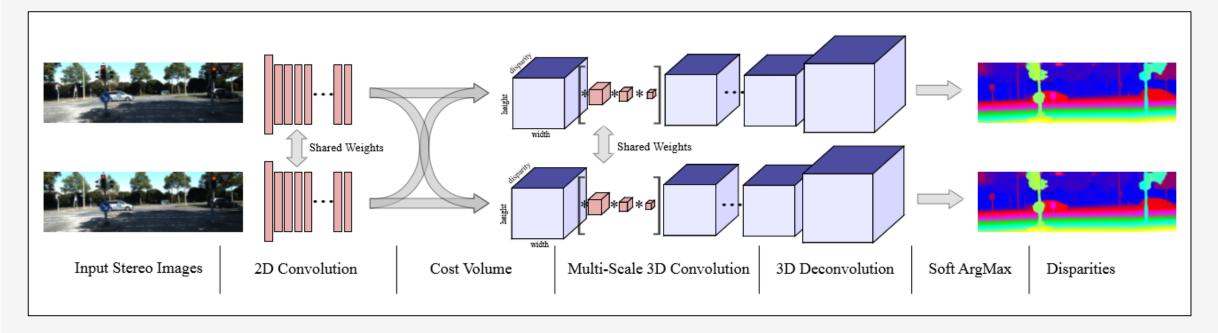
#### Using geometry in our model structure improves performance

| Scene            | Spatial<br>Extent         | PoseNet<br>(GoogLeNet, L2) [20] | Bayesian PoseNet<br>(GoogLeNet, L2) [19] | PoseNet v2 (this work)<br>(ResNet, L1+reprojection) |
|------------------|---------------------------|---------------------------------|------------------------------------------|-----------------------------------------------------|
| King's College   | $140 \times 40m$          | 1.66m, 4.86°                    | 1.74m, 4.06°                             | 0.92m, 0.83°                                        |
| Street           | $500 \times 100m$         | 2.96m, 6.00°                    | 2.14m, 4.96°                             | 1.32m, 1.57°                                        |
| Old Hospital     | $50 \times 40m$           | 2.62m, 4.90°                    | 2.57m, 5.14°                             | 1.12m, 1.83°                                        |
| Shop Façade      | $35 \times 25m$           | 1.41m, 7.18°                    | 1.25m, 7.54°                             | 0.72m, 0.93°                                        |
| St Mary's Church | $80 \times 60m$           | 2.45m, 7.96°                    | 2.11m, 8.38°                             | 1.62m, 1.84°                                        |
| Average          |                           | 2.22m, 6.18°                    | 1.96m, 6.02°                             | 1.14m, 1.40°                                        |
|                  |                           |                                 |                                          |                                                     |
| Chess            | $3 \times 2 \times 1 m$   | 0.32m, 6.60°                    | 0.37m, 7.24°                             | 0.12m, 3.24°                                        |
| Fire             | $2.5 \times 1 \times 1$ m | 0.47m, 14.0°                    | 0.43m, 13.7°                             | 0.13m, 4.20°                                        |
| Heads            | $2 \times 0.5 \times 1$ m | 0.30m, 12.2°                    | 0.31m, 12.0°                             | 0.08m, 5.72°                                        |
| Office           | 2.5×2×1.5m                | 0.48m, 7.24°                    | 0.48m, 8.04°                             | 0.16m, 2.38°                                        |
| Pumpkin          | $2.5 \times 2 \times 1$ m | 0.49m, 8.12°                    | 0.61m, 7.08°                             | 0.14m, 2.15°                                        |
| Red Kitchen      | 4×3×1.5m                  | 0.58m, 8.34°                    | 0.58m, 7.54°                             | 0.16m, 4.24°                                        |
| Stairs           | 2.5×2×1.5m                | 0.48m, 13.1°                    | 0.48m, 13.1°                             | 0.18m, 4.86°                                        |
| Average          |                           | 0.45m, 9.94°                    | 0.47m, 9.81°                             | 0.14m, 3.83°                                        |

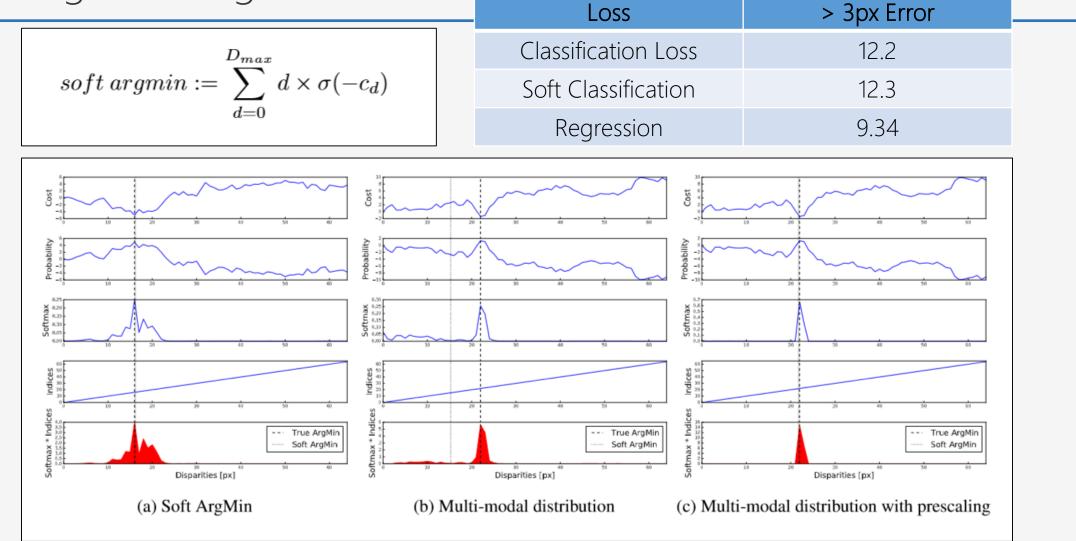
Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression with deep learning. CVPR, 2017 (to appear).

#### Epistemic uncertainty to estimate loop closure

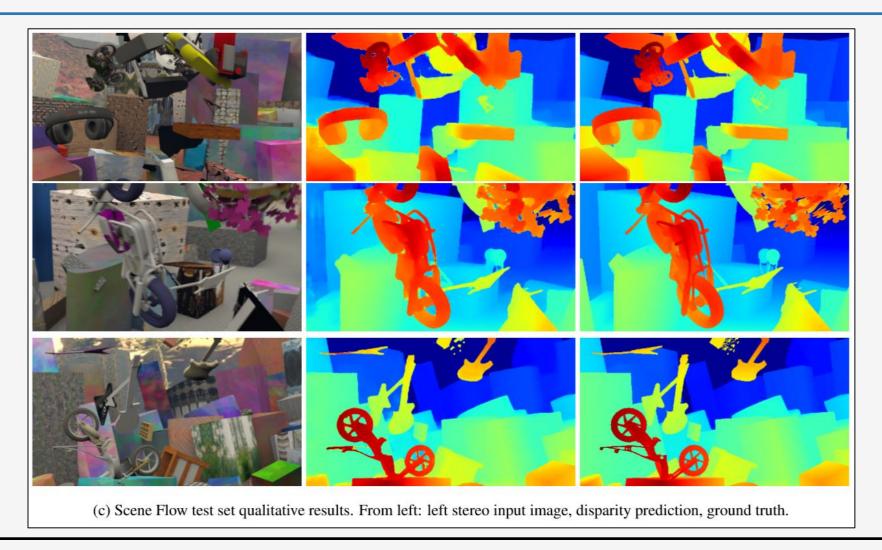





Increased uncertainty from strong occlusion, motion blur, visually ambiguous landmarks


Alex Kendall and Roberto Cipolla. Modelling Uncertainty in Deep Learning for Camera Relocalization. ICRA, 2016.

#### End to end deep learning for stereo vision


- Form differentiable cost volume and sub-pixel regression network with soft argmax function
- Use 3-D convolutions to learn to regularise the volume



#### Soft ArgMin / ArgMax



#### Scene Flow Dataset Results



Probabilistic Deep Learning for Stereo Vision

# Input Left Image Input Right Image A DAMAGE AND A DAMAG

#### Depth Prediction

#### Depth Prediction Uncertainty

Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. arXiv preprint 1703.04309, 2017. Alex Kendall and Roberto Cipolla. Uncertainty and Unsupervised Learning for Stereo Vision with Probabilistic Deep Learning. Under Review, 2017.

#### 1st Place on the 2012 & 2015 KITTI Stereo Challenge

| s.net/datasets/kitti                                                                                             | /eval_scene_flow                                                                                                                             | v.php?bencl                          | hmark=                                                                  | stereo                                                                                                   |                                                                                                                                |                                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |                                  |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                                                  |                                                                                                                                              | 1.1.1.1.1.1.                         |                                                                         |                                                                                                          |                                                                                                                                |                                                                                                                     | 17 10 10 10 IV                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |                                  |
|                                                                                                                  |                                                                                                                                              |                                      |                                                                         |                                                                                                          |                                                                                                                                |                                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |                                  |
|                                                                                                                  |                                                                                                                                              |                                      |                                                                         |                                                                                                          |                                                                                                                                |                                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |                                  |
| 1. 1. 1. 1. 1.                                                                                                   | and the second second                                                                                                                        |                                      |                                                                         |                                                                                                          |                                                                                                                                |                                                                                                                     |                                                                                                            | Section of the sectio |                                                                                                                                                                                                                                                                                        |                                  |
|                                                                                                                  | 1.41                                                                                                                                         | -1                                   |                                                                         |                                                                                                          |                                                                                                                                |                                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |                                  |
|                                                                                                                  | he KI∏                                                                                                                                       | I I Vis                              | ion                                                                     |                                                                                                          |                                                                                                                                |                                                                                                                     |                                                                                                            | (Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOYOTA                                                                                                                                                                                                                                                                                 |                                  |
| Re                                                                                                               | enchma                                                                                                                                       | ark S                                | uit.                                                                    | 2                                                                                                        |                                                                                                                                |                                                                                                                     |                                                                                                            | ELEBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                        |                                  |
|                                                                                                                  | pject of Karlsruhe                                                                                                                           |                                      |                                                                         |                                                                                                          |                                                                                                                                |                                                                                                                     |                                                                                                            | RAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHICAGO S                                                                                                                                                                                                                                                                              |                                  |
|                                                                                                                  | Toyota Technologic                                                                                                                           |                                      |                                                                         |                                                                                                          |                                                                                                                                |                                                                                                                     |                                                                                                            | Mars 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GICAL M Karlsruhe Institu                                                                                                                                                                                                                                                              | te of Technology                 |
|                                                                                                                  |                                                                                                                                              |                                      |                                                                         |                                                                                                          |                                                                                                                                |                                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |                                  |
|                                                                                                                  |                                                                                                                                              |                                      |                                                                         |                                                                                                          |                                                                                                                                | - <b>6</b> - <b>6</b> -                                                                                             |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d                                                                                                                                                                                                                                                                                      |                                  |
| nom                                                                                                              | e setup st                                                                                                                                   | ereo flov                            | w sce                                                                   | ene flow                                                                                                 | odom                                                                                                                           | etry ol                                                                                                             | bject tra                                                                                                  | acking roa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ad semantics raw data submit                                                                                                                                                                                                                                                           | results jobs                     |
|                                                                                                                  |                                                                                                                                              |                                      |                                                                         |                                                                                                          |                                                                                                                                |                                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |                                  |
| 120 C                                                                                                            |                                                                                                                                              |                                      |                                                                         |                                                                                                          |                                                                                                                                |                                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |                                  |
|                                                                                                                  |                                                                                                                                              |                                      |                                                                         |                                                                                                          |                                                                                                                                |                                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |                                  |
| An                                                                                                               | dreas Geiger                                                                                                                                 | (MPI Tübir                           | ngen)                                                                   | Philip I                                                                                                 | Lenz (KIT                                                                                                                      | r)   Chri                                                                                                           | stoph Still                                                                                                | ler (KIT)   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Raquel Urtasun (University of Toron                                                                                                                                                                                                                                                    | to)                              |
| An                                                                                                               | dreas Geiger                                                                                                                                 | (MPI Tübir                           | ngen)                                                                   | Philip I                                                                                                 | Lenz (KIT                                                                                                                      | 「)  Chri                                                                                                            | stoph Still                                                                                                | ler (KIT)   F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Raquel Urtasun (University of Toron                                                                                                                                                                                                                                                    | to)                              |
|                                                                                                                  |                                                                                                                                              |                                      | 9                                                                       |                                                                                                          | ,                                                                                                                              | 「)  Chri                                                                                                            | stoph Still                                                                                                | ler (KIT)   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Raquel Urtasun (University of Toroni                                                                                                                                                                                                                                                   | to)                              |
|                                                                                                                  | idreas Geiger                                                                                                                                |                                      | 9                                                                       |                                                                                                          | ,                                                                                                                              | 「)  Chri                                                                                                            | stoph Still                                                                                                | ler (KIT)   F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Raquel Urtasun (University of Toron                                                                                                                                                                                                                                                    | to)                              |
|                                                                                                                  |                                                                                                                                              |                                      | 9                                                                       |                                                                                                          | ,                                                                                                                              | 「)  Chri:<br><u>D1-all</u>                                                                                          | stoph Still<br>Density                                                                                     | ler (KIT)   F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Raquel Urtasun (University of Toroni<br>Environment                                                                                                                                                                                                                                    | to)<br>Compare                   |
|                                                                                                                  | ereo Ev                                                                                                                                      | valua                                | tio                                                                     | n 20                                                                                                     | 15                                                                                                                             | 1                                                                                                                   | 1                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                        |                                  |
| St                                                                                                               | Method<br>GC-NET                                                                                                                             | Valua                                | tio                                                                     | n 20<br>D1-bg<br>2.21 %                                                                                  | 15<br>D1-fg<br>6.16 %                                                                                                          | <u>D1-all</u><br>2.87 %                                                                                             | <b>Density</b><br>100.00 %                                                                                 | Runtime<br>0.9 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Environment                                                                                                                                                                                                                                                                            | Compare                          |
| St                                                                                                               | Method<br>GC-NET                                                                                                                             | Valua                                | tio                                                                     | n 20<br>D1-bg<br>2.21 %                                                                                  | 15<br>D1-fg<br>6.16 %                                                                                                          | <u>D1-all</u><br>2.87 %                                                                                             | <b>Density</b><br>100.00 %                                                                                 | Runtime<br>0.9 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Environment<br>Nvidia GTX Titan X                                                                                                                                                                                                                                                      | Compare                          |
| St<br>1<br>A. Ke                                                                                                 | Method<br>GC-NET<br>ndall, H. Martirosyan                                                                                                    | Valua                                | tio                                                                     | D1-bg<br>2.21 %                                                                                          | <b>15</b><br>D1-fg<br>6.16 %<br>Bachrach au                                                                                    | D1-all<br>2.87 %<br>nd A. Bry: <u>En</u>                                                                            | Density<br>100.00 %<br>Id-to-End Learn                                                                     | Runtime<br>0.9 s<br>ning of Geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Environment<br>Nvidia GTX Titan X<br>and Context for Deep Stereo Regression. arXiv preprint                                                                                                                                                                                            | Compare                          |
| St<br>1<br>4. Ke<br>2<br>3                                                                                       | Method<br>GC-NET<br>ndall, H. Martirosyan<br>DRR                                                                                             | Valua<br>Setting<br>, S. Dasgupta, F | Code<br>P. Henry, F<br><u>code</u>                                      | D1-bg<br>2.21 %<br>R. Kennedy, A<br>2.58 %<br>2.72 %                                                     | <b>D1-fg</b><br>6.16 %<br>Bachrach au<br>6.04 %<br>6.95 %                                                                      | D1-all<br>2.87 %<br>nd A. Bry: <u>En</u><br>3.16 %<br>3.42 %                                                        | Density<br>100.00 %<br>d-to-End Learn<br>100.00 %                                                          | Runtime       0.9 s       ning of Geometry       0.4 s       48 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Environment<br>Nvidia GTX Titan X<br>and Context for Deep Stereo Regression. arXiv preprint<br>Nvidia GTX Titan X<br>1 core @ 2.5 Ghz (C/C++)                                                                                                                                          | Compare                          |
| St<br>1<br>4. Ke<br>2<br>3                                                                                       | Method<br>GC-NET<br>ndall, H. Martirosyan<br>DRR<br>L-ResMatch                                                                               | Valua<br>Setting<br>, S. Dasgupta, F | Code<br>P. Henry, F<br><u>code</u>                                      | D1-bg<br>2.21 %<br>R. Kennedy, A<br>2.58 %<br>2.72 %                                                     | <b>D1-fg</b><br>6.16 %<br>Bachrach au<br>6.04 %<br>6.95 %                                                                      | D1-all<br>2.87 %<br>nd A. Bry: <u>En</u><br>3.16 %<br>3.42 %                                                        | Density<br>100.00 %<br>d-to-End Learn<br>100.00 %                                                          | Runtime       0.9 s       ning of Geometry       0.4 s       48 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Environment<br>Nvidia GTX Titan X<br>and Context for Deep Stereo Regression. arXiv preprint<br>Nvidia GTX Titan X<br>1 core @ 2.5 Ghz (C/C++)                                                                                                                                          | Compare                          |
| St<br>1<br>4                                                                                                     | Method<br>GC-NET<br>ndall, H. Martirosyan<br>DRR<br>L-ResMatch<br>aked and L. Wolf: Imp<br>Displets v2                                       | Valua<br>Setting<br>, S. Dasgupta, F | Code<br>P. Henry, R<br>code<br>tatching w<br>code                       | D1-bg<br>2.21 %<br>Kennedy, A<br>2.58 %<br>2.72 %<br>ith Constant<br>3.00 %                              | <b>15</b><br>D1-fg<br>6.16 %<br>Bachrach ar<br>6.04 %<br>6.95 %<br>Highway Netto<br>5.56 %                                     | D1-all<br>2.87 %<br>nd A. Bry: En<br>3.16 %<br>3.42 %<br>works and Re<br>3.43 %                                     | Density<br>100.00 %<br>d-to-End Learn<br>100.00 %<br>flective Loss. a<br>100.00 %                          | Runtime       0.9 s       ning of Geometry       0.4 s       48 s       arXiv preprint arx       265 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Environment<br>Nvidia GTX Titan X<br>and Context for Deep Stereo Regression. arXiv preprint<br>Nvidia GTX Titan X<br>1 core @ 2.5 Ghz (C/C++)<br>iv:1701.00165 2016.                                                                                                                   | Compare                          |
| St<br>1<br>4                                                                                                     | Method<br>GC-NET<br>ndall, H. Martirosyan<br>DRR<br>L-ResMatch<br>aked and L. Wolf: Imp<br>Displets v2                                       | Valua<br>Setting<br>, S. Dasgupta, F | Code<br>P. Henry, R<br>code<br>tatching w<br>code                       | D1-bg<br>2.21 %<br>Kennedy, A<br>2.58 %<br>2.72 %<br>ith Constant<br>3.00 %                              | <b>15</b><br>D1-fg<br>6.16 %<br>Bachrach ar<br>6.04 %<br>6.95 %<br>Highway Netto<br>5.56 %                                     | D1-all<br>2.87 %<br>nd A. Bry: En<br>3.16 %<br>3.42 %<br>works and Re<br>3.43 %                                     | Density<br>100.00 %<br>d-to-End Learn<br>100.00 %<br>flective Loss. a<br>100.00 %                          | Runtime       0.9 s       ning of Geometry       0.4 s       48 s       arXiv preprint arx       265 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Environment<br>Nvidia GTX Titan X<br>and Context for Deep Stereo Regression. arXiv preprint<br>Nvidia GTX Titan X<br>1 core @ 2.5 Ghz (C/C++)<br>iv:1701.00165 2016.<br>>8 cores @ 3.0 Ghz (Matlab + C/C++)                                                                            | Compare<br>arxiv:1703.04309 2017 |
| St<br>1<br>4<br>5                                                                                                | Method<br>GC-NET<br>ndall, H. Martirosyan,<br>DRR<br>L-ResMatch<br>aked and L. Wolf: Imp<br>Displets v2<br>ney and A. Geiger: Di<br>CNNF+SGM | Valua<br>Setting<br>, S. Dasgupta, F | Code<br>P. Henry, R<br>code<br>tatching w<br>code                       | D1-bg<br>2.21 %<br>R. Kennedy, A<br>2.58 %<br>2.72 %<br>tht Constant<br>3.00 %<br>mbiguities u<br>2.78 % | <b>15</b><br>D1-fg<br>6.16 %<br>Bachrach au<br>6.04 %<br>6.95 %<br>Highway Netr<br>5.56 %<br>sing Object K<br>7.69 %           | D1-all<br>2.87 %<br>ad A. Bry: En<br>3.16 %<br>3.42 %<br>works and Re<br>3.43 %<br>anowledge. Co<br>3.60 %          | Density<br>100.00 %<br>d-to-End Learn<br>100.00 %<br>100.00 %<br>flective Loss. a<br>100.00 %              | Runtime       0.9 s       ing of Geometry.       0.4 s       48 s       arXiv preprint arx       265 s       computer Vision ar       71 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Environment<br>Nvidia GTX Titan X<br>and Context for Deep Stereo Regression, arXiv preprint<br>Nvidia GTX Titan X<br>1 core @ 2.5 Ghz (C/C++)<br>iv:1701.00165 2016.<br>>8 cores @ 3.0 Ghz (Matlab + C/C++)<br>nd Pattern Recognition (CVPR) 2015.<br>TESLA K40C                       | Compare<br>arxiv:1703.04309 2017 |
| St<br>1<br>4<br>7<br>8<br>9<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Method<br>GC-NET<br>ndall, H. Martirosyan<br>DRR<br>L-ResMatch<br>aked and L. Wolf: Imp<br>Displets v2<br>ney and A. Geiger: Di              | valua<br>Setting<br>, S. Dasgupta, P | Code<br>Code<br>R. Henry, R<br>code<br>tatching w<br>code<br>g Stereo A | D1-bg<br>2.21 %<br>2.58 %<br>2.72 %<br>ith Constant<br>3.00 %<br>ambiguities u<br>2.78 %<br>2.58 %       | <b>15</b><br>D1-fg<br>6.16 %<br>Bachrach au<br>6.04 %<br>6.95 %<br>Highway Nett<br>5.56 %<br>sing Object K<br>7.69 %<br>8.74 % | D1-all<br>2.87 %<br>nd A. Bry: En<br>3.16 %<br>3.42 %<br>works and Re<br>3.43 %<br>nowledge. Co<br>3.60 %<br>3.61 % | Density<br>100.00 %<br>Id-to-End Learn<br>100.00 %<br>100.00 %<br>flective Loss. a<br>100.00 %<br>100.00 % | Runtime       0.9 s       ning of Geometry       0.4 s       48 s       arXiv preprint arx       265 s       computer Vision ar       71 s       68 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Environment<br>Nvidia GTX Titan X<br>and Context for Deep Stereo Regression, arXiv preprint<br>Nvidia GTX Titan X<br>1 core @ 2.5 Ghz (C/C++)<br>iv:1701.00165 2016.<br>>8 cores @ 3.0 Ghz (Matlab + C/C++)<br>nd Pattern Recognition (CVPR) 2015.<br>TESLA K40C<br>Nvidia GTX Titan X | Compare                          |

## **SKYDIO** Autonomous Drone Prototype



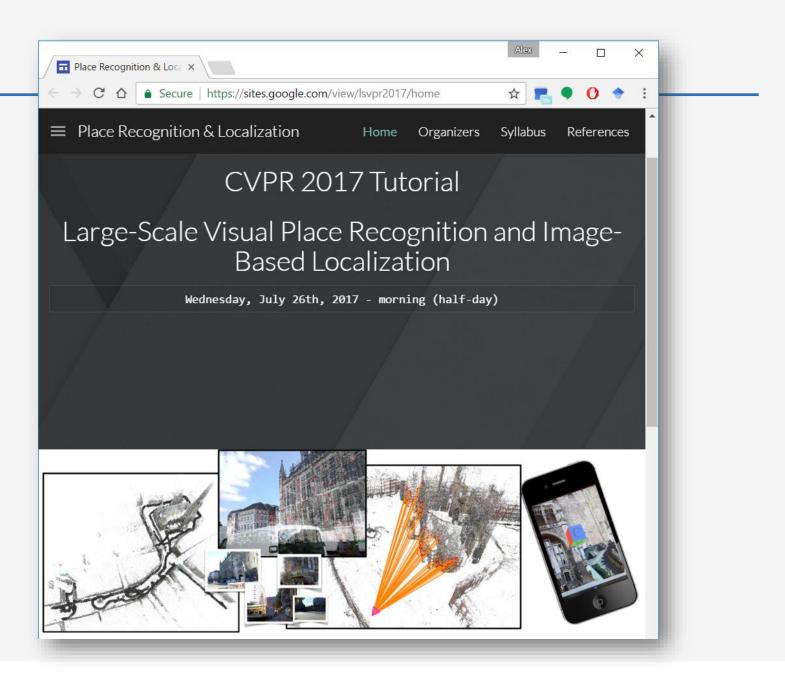
#### Conclusions

#### 1 Aleatoric uncertainty is important for

- Large data situations, where epistemic uncertainty is explained away,
- Real-time applications, because we can form aleatoric models without expensive Monte Carlo samples,
- Multitask applications, because we can appropriately weight each loss.

#### 2 *Epistemic* uncertainty is important for

- **Safety-critical applications**, because epistemic uncertainty is required to understand examples which are different from training data,
- Small datasets, where the training data is sparse,
- **Exploratory applications**, such as loop closure and reinforcement learning.




3 It is important to quantify the accuracy of uncertainty estimates

- We should leverage our knowledge of geometry when
   designing machine learning models for computer vision
  - Reprojection loss
  - Stereo cost volume

#### **CVPR** Tutorial

Hawaii July 26<sup>th</sup> 2017 See you there?



#### Thank You & References

- Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? arXiv preprint 1703.04977, 2017.
- Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression with deep learning. CVPR, 2017 (to appear).
- Alex Kendall et al. End-to-End Learning of Geometry and Context for Deep Stereo Regression. arXiv preprint 1703.04309, 2017.
- Alex Kendall and Roberto Cipolla. Uncertainty and Unsupervised Learning for Stereo Vision with Probabilistic Deep Learning. Under Review, 2017.
- Alex Kendall et al. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. arxiv preprint 1705.07115, 2017.
- Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. PAMI 2017.
- Alex Kendall and Roberto Cipolla. Modelling Uncertainty in Deep Learning for Camera Relocalization. ICRA, 2016.
- Alex Kendall et al. Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding. arXiv 1511.02680, 2015.
- Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

