Geometric Loss Functions for Camera Pose Regression with Deep Learning Alex Kendall and Roberto Cipolla, University of Cambridge Webdemo: http://mi.eng.cam.ac.uk/projects/relocalisation @alexgkendall

Input RGB Image

Convolutional Neural Network (GoogLeNet)

PoseNet

- \checkmark Robust to lighting, weather, dynamic objects learns features based on shape, appearance and global context
- \checkmark Fast inference, <2ms per image on Titan GPU
- ✓ Scale not dependent on number of training images
- \checkmark Trained with a naïve end-to-end loss function to regress camera position, **x**, and orientation, **q**;

$$\log x = \|x - \hat{x}\|_{2} + \beta \left\| q - \frac{\hat{q}}{\|\hat{q}\|} \right\|_{2}$$

- X Relocalization accuracy of 2m, 5° over scene of $50,000m^2...$ can we do better?
- **X** How do we weight position, **q**, and orientation, **x**, losses?

6-DOF Camera Pose

This work: Geometric Loss Function

- \succ Use reprojection function, π , and train on reprojection of 3D geometry in 2D image space
- > Using ideas from bundle adjustment as a differentiable training loss \succ No calibration, we can use arbitrary camera intrinsics

$$loss = \frac{1}{|\mathcal{G}'|} \sum_{g_i \in \mathcal{G}'} ||\pi(x, q, g_i) - g_i| \leq 1$$

What if we don't have geometry?

- \succ What can we do if we don't have 3D geometry, e.g. SFM model, RGB-D data
- > We can use task-dependent (homoscedastic) uncertainty to weight position and orientation

$$\log = \frac{\|\mathbf{x} - \hat{\mathbf{x}}\|_2}{\sigma_x^2} + \log \sigma_x^2 + \frac{\|\mathbf{q} - \hat{q}/\|\hat{q}\|\|_2}{\sigma_q^2} + \log \sigma_q^2$$

Performance

Cambridge Landmarks, King's College				Dubrov	nik 6K	
	Median Error		Accuracy	Median Error		Accuracy
Loss function	x[m]	q[°]	< 2m,5°	x[m]	q[°]	< 2m,5°
Linear sum, β = 500 [1]	1.52	1.19	65%	13.1	4.68	30.1%
Learn weighting with task uncertainty	0.99	1.06	85.3%	9.88	4.73	41.7%
Reprojection loss	does not converge					
Learn weighting pretrain + Reprojection loss	0.88	1.04	90.3%	7.90	4.40	48.6%
SIFT + SfM Geometry [4]	0.42	0.55	-	1.1	-	_

 $-\pi(\hat{\mathbf{x}},\hat{\mathbf{q}},\mathbf{g}_i)\|_1$

Future Work:

- City-scale metric localisation
- augmented reality

References:

- Camera Relocalization ICRA, 2016.
- regression with deep learning. CVPR, 2017.

CVPR Tutorial

Large-Scale Visual Place Recognition and Image-Based Localization Wednesday, July 26th, 2017 - morning (half-day)

Fine grained localisation – achieve accuracy which enables

Temporal localisation and end-to-end learning for SLAM

[1] Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.

[2] Alex Kendall and Roberto Cipolla. Modelling Uncertainty in Deep Learning for

[3] Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose

[4] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient & effective prioritized matching for large-scale image-based localization. PAMI, 2016.