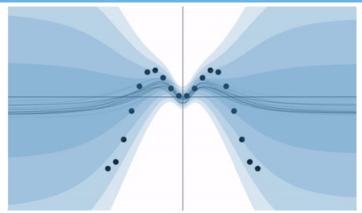


What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?

Alex Kendall • Yarin Gal

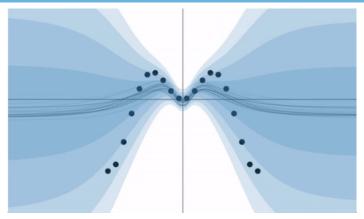
University of Cambridge • University of Oxford • The Alan Turing Institute varin@cs.ox.ac.uk

Bayesian deep learning



For example:

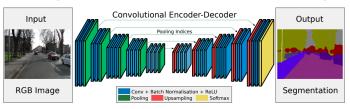
Bayesian deep learning



- ▶ What if we could capture uncertainty in modern computer vision?
 - ► Detect anomalies with image data
 - ► Identify adversarial examples
 - ► Learn with small amounts of labelled image data

- ▶ Not a new idea...
 - ▶ Particle filtering [Blake, Curwen, and Zisserman, 1993],
 - ► Conditional random fields [He, Zemel, and Carreira-Perpinan, 2004]
- Using BDL we can estimate uncertainty for modern computer vision models.

E.g., Segnet: [Badrinarayanan, Kendall, and Cipolla, 2015]

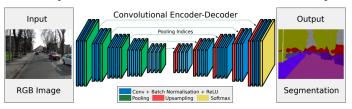


- ► But what uncertainty do we even want?

 There are many different types of uncertainty, including
 - ▶ Aleatoric uncertainty, capturing inherent noise in the data
 - ► Epistemic uncertainty, capturing model's lack of knowledge

- ▶ Not a new idea...
 - ▶ Particle filtering [Blake, Curwen, and Zisserman, 1993],
 - ► Conditional random fields [He, Zemel, and Carreira-Perpinan, 2004]
- Using BDL we can estimate uncertainty for modern computer vision models.

E.g., Segnet: [Badrinarayanan, Kendall, and Cipolla, 2015]

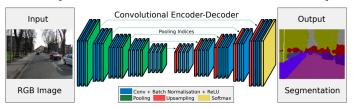


- ► But what uncertainty do we even want?

 There are many different types of uncertainty, including:
 - ► Aleatoric uncertainty, capturing inherent noise in the data
 - ► Epistemic uncertainty, capturing model's lack of knowledge

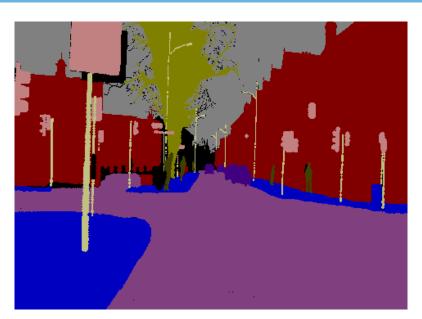
- ▶ Not a new idea...
 - ▶ Particle filtering [Blake, Curwen, and Zisserman, 1993],
 - ► Conditional random fields [He, Zemel, and Carreira-Perpinan, 2004]
- Using BDL we can estimate uncertainty for modern computer vision models.

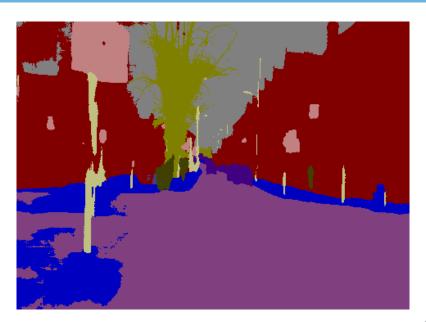
E.g., Segnet: [Badrinarayanan, Kendall, and Cipolla, 2015]

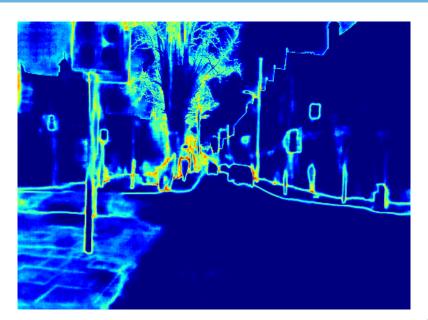


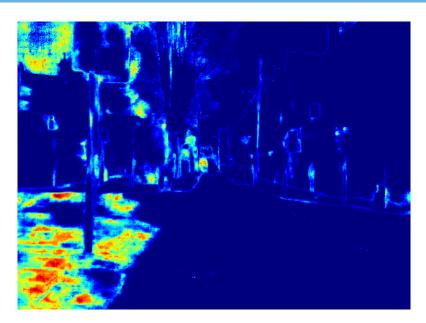
- ► But what uncertainty do we even want?

 There are many different types of uncertainty, including:
 - ► Aleatoric uncertainty, capturing inherent noise in the data
 - ► Epistemic uncertainty, capturing model's lack of knowledge

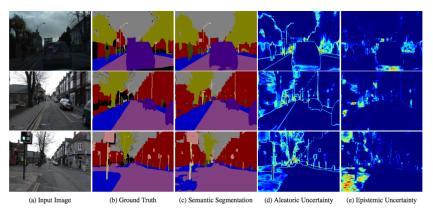








- ► *Aleatoric uncertainty*, capturing inherent noise in the data
- ► Epistemic uncertainty, capturing model's lack of knowledge



- ► Aleatoric uncertainty, capturing inherent noise in the data
- ► Epistemic uncertainty, capturing model's lack of knowledge

Can we detect anomalies with Segnet?

Train dataset	Test dataset	RMS	Aleatoric variance	Epistemic variance
Make3D / 4	Make3D	5.76	0.506	7.73
Make3D / 2	Make3D	4.62	0.521	4.38
Make3D	Make3D	3.87	0.485	2.78
Make3D / 4	NYUv2	-	0.388	15.0
Make3D	NYUv2		0.461	4.87

(a) Regression

- ► Aleatoric uncertainty, capturing inherent noise in the data
- ► Epistemic uncertainty, capturing model's lack of knowledge

Can we detect anomalies with Segnet?

Train dataset	Test dataset	RMS	Aleatoric variance	Epistemic variance
Make3D / 4	Make3D	5.76	0.506	7.73
Make3D / 2	Make3D	4.62	0.521	4.38
Make3D	Make3D	3.87	0.485	2.78
Make3D / 4	NYUv2	-	0.388	15.0
Make3D	NYUv2		0.461	4.87

(a) Regression

- ► Aleatoric uncertainty, capturing inherent noise in the data
- ► Epistemic uncertainty, capturing model's lack of knowledge

Can we detect anomalies with Segnet?

Train dataset	Test dataset	RMS	Aleatoric variance	Epistemic variance
Make3D / 4 Make3D / 2 Make3D	Make3D Make3D Make3D	5.76 4.62 3.87	0.506 0.521 0.485	7.73 4.38 2.78
Make3D / 4 Make3D	NYUv2 NYUv2	-	0.388 0.461	15.0 ↑ 4.87

(a) Regression

Come to our Poster!

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?

Alex Kendall (agk34@cam.ac.uk) and Yarin Gal (yarin@cs.ox.ac.uk)

for semantic segmentation and per-

pixel depth regression datasets.

We use a convolutional network

layers and 9.4M parameters

Decel ab-LFOV (2)

Bayesian SegNet [22 Dilution# [20]

Hation8 [30]

+ Alcatoric & Episterni

based on DenseNet [20] with 103

1. Types of Uncertainty

In Bayesian modelling, there are two main types of uncertainty we can model [1]:

- Epistemic uncertainty: uncertainty in the model, capturing what our model doesn't know due to lack of training data. Can be explained away with increased training data.
- Aleatoric uncertainty: information which our data cannot explain. Can be explained away with increased sensor precision.

4. Uncertainty with Distance from Training Data

Experiments training on one dataset and testing on another.

- Aleatoric uncertainty cannot be
- explained away with more data,

 Aleatoric uncertainty does not increase
- for out-of-data examples (situations different from training set),
- Epistemic uncertainty increases with decreasing training size,
- Epistemic uncertainty increases with examples out of the training distribution.

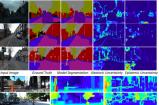
Train dataset	dataset	RMS	variance variance	variano
Make3D/4	Make3D	5.76	0.506	7.73
Make3D/2	Make3D	4.62	0.521	4.38
Make3D	Make3D	3.87	0.485	2.78
Make3D / 4	NYUv2		0.388	15.0
Make3D	NYUv2		0.461	4.87

Per-pixel depth regression

2. We jointly model aleatoric and epistemic uncertainty with deep learning. Our model's uncertainty for pixel output v_i is given by:

eep learning. Our model's uncertainty for pixel output
$$y_l$$
 is given by:
 $Var(y_l) \approx \frac{1}{T} \sum \sigma(x_t)^2 + \frac{1}{T} \sum f(x_t)^2 - \left(\frac{1}{T} \sum f(x_t)\right)^2$

Using Monte Carlo dropout samples, T_i learning aleatoric uncertainty with loss: $Loss(\theta) = \frac{1}{D} \sum_{j=0}^{\infty} \frac{1}{2\sigma(x_j)} ||y_i - f(x_j)||^2 + \log \sigma(x_j)$



Kansch et al. [3 Liu et al. [34] Li et al. [35] Laina et al. [26

Depth Regression Uncertainty

5. Conclusions

- It is important to model aleatoric uncertainty for:
- Large data situations, where epistemic uncertainty is explained away,
 Real-time applications, because we can form aleatoric models without expensive MC samples.
- . Noisy data, because we can learn to attenuate erroneous labels.
- And epistemic uncertainty is important for:

 Safety-critical applications, because epistemic
- uncertainty is required to understand examples which are different from training data,
- Small datasets where the training data is sparse.
- ► Tue Dec 5th 06:30 10:30 PM Pacific Ballroom #95