UNIVERSITYOF CAMBRIDGE

1. Types of Uncertainty

In Bayesian modelling, there are two main types of uncertainty we can model [1]:

- *Epistemic uncertainty*: uncertainty in the model, capturing what our model doesn't know due to lack of training data. Can be explained away with increased training data.
- Aleatoric uncertainty: information which our data cannot explain. Can be explained away with increased sensor precision.

4. Uncertainty with Distance from Training Data

Experiments training on one dataset and testing on another.

- Aleatoric uncertainty cannot be explained away with more data,
- Aleatoric uncertainty does not increase for out-of-data examples (situations different from training set),
- Epistemic uncertainty increases with decreasing training size,
- Epistemic uncertainty increases with examples out of the training distribution.

Train	Test	RMS	Aleatoric	Epistemic
dataset	dataset		variance	variance
Make3D / 4	Make3D	5.76	0.506	7.73
Make3D / 2	Make3D	4.62	0.521	4.38
Make3D	Make3D	3.87	0.485	2.78
Make3D / 4 Make3D	NYUv2 NYUv2	-	0.388 0.461	15.0 4.87

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? Alex Kendall (<u>agk34@cam.ac.uk</u>) and Yarin Gal (<u>yarin@cs.ox.ac.uk</u>) 2. We jointly model aleatoric and epistemic uncertainty 3. SOTA performance with deep learning. Our model's uncertainty for pixel output y_i is given by: $Var(y_i) \approx \frac{1}{T} \sum_{T} \sigma(x_t)^2 + \frac{1}{T} \sum_{T} f(x_t)^2 - \left(\frac{1}{T} \sum_{T} f(x_t)\right)^2$ pixel depth regression datasets. We use a convolutional network Using Monte Carlo dropout samples, T, learning aleatoric uncertainty with loss: based on DenseNet [20] with 103 $Loss(\theta) = \frac{1}{D} \sum_{i=1}^{n} \frac{1}{2\sigma(x)_{i}} \left| |y_{i} - f(x)_{i}| \right|^{2} + \log \sigma(x)_{i}$ layers and 9.4M parameters Ka Model Segmentation Aleatoric Uncertainty Epistemic Uncertainty Ground Truth Input Image De Modelling uncertainty allows the model to learn to attenuate the

Input Image

Depth Regression

5. Conclusions

It is important to model *aleatoric* uncertainty for:

- Large data situations, where epistemic uncertainty is explained away,
- Real-time applications, because we can form aleatoric models without expensive MC samples.
- Noisy data, because we can learn to attenuate erroneous labels.

Uncertainty

And *epistemic* uncertainty is important for: • Safety-critical applications, because epistemic uncertainty is required to understand examples which are different from training data, • Small datasets where the training data is

- sparse.

for semantic segmentation and per-

CamVid	IoU			
SegNet [28]	46.4			
FCN-8 [29]	57.0			
DeepLab-LFOV [24]	61.6			
Bayesian SegNet [22]	63.1			
Dilation8 [30]	65.3			
Dilation8 + FSO [31]	66.1			
DenseNet [20]	66.9			
This work:				
DenseNet (Our Implementation)	67.1			
+ Aleatoric Uncertainty	67.4			
+ Epistemic Uncertainty	67.2			
+ Aleatoric & Epistemic	67.5			

rel	rms	\log_{10}				
0.355	9.20	0.127				
0.335	9.49	0.137				
0.278	7.19	0.092				
0.176	4.46	0.072				
This work:						
0.167	3.92	0.064				
0.149	3.93	0.061				
0.162	3.87	0.064				
0.149	4.08	0.063				
	0.355 0.335 0.278 0.176 <i>ork:</i> 0.167 0.149 0.162	0.355 9.20 0.335 9.49 0.278 7.19 0.176 4.46 ork: 0.167 3.92 0.162 3.87				

effect from erroneous labels and learn loss attenuation.