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Abstract

Deep learning and convolutional neural networks have become the dominant tool for computer
vision. These techniques excel at learning complicated representations from data using
supervised learning. In particular, image recognition models now out-perform human
baselines under constrained settings. However, the science of computer vision aims to
build machines which can see. This requires models which can extract richer information
than recognition, from images and video. In general, applying these deep learning models
from recognition to other problems in computer vision is significantly more challenging.

This thesis presents end-to-end deep learning architectures for a number of core computer
vision problems; scene understanding, camera pose estimation, stereo vision and video
semantic segmentation. Our models outperform traditional approaches and advance state-of-
the-art on a number of challenging computer vision benchmarks. However, these end-to-end
models are often not interpretable and require enormous quantities of training data.

To address this, we make two observations: (i) we do not need to learn everything from
scratch, we know a lot about the physical world, and (ii) we cannot know everything from
data, our models should be aware of what they do not know. This thesis explores these
ideas using concepts from geometry and uncertainty. Specifically, we show how to improve
end-to-end deep learning models by leveraging the underlying geometry of the problem. We
explicitly model concepts such as epipolar geometry to learn with unsupervised learning,
which improves performance. Secondly, we introduce ideas from probabilistic modelling
and Bayesian deep learning to understand uncertainty in computer vision models. We show
how to quantify different types of uncertainty, improving safety for real world applications.
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Chapter 1

Introduction

1.1 Motivation

Vision is the process of discovering from images what is present in the world and where it is
(Marr, 1982). It is an extremely complicated sense, but provides the most powerful cues of
our environment. Our eyes capture ten gigabits per second of information from the world
around us (Anderson et al., 2005). The human brain is able to process over three million bits
per second of this information (Anderson et al., 2005). Our brain can use this information
to learn a remarkably rich representation of the world around us (Barlow, 1989). However,
developing an artificial system which can achieve the same performance and robustness as
humans has long challenged researchers from fields as diverse as physiology, philosophy,
psychology, engineering, computer science and artificial intelligence.

Computer vision is a multidisciplinary science that strives to give machines the ability to
see (Szeliski, 2010). This problem is particularly challenging because of the vast complexity
and variation in appearance we observe from our visual world. To date, designing a hand-
engineered approach has not been able to scale to a satisfactory level of understanding
(Papert, 1966; Roberts, 1963). Machine learning techniques (Bishop, 2006) provide the most
promising approach for designing systems with human-level understanding of imagery.

As a science, computer vision is having a profound impact on many disruptive areas of
technology. The contributions of this thesis are novel machine learning architectures which
address many of the core computer vision problems. The architectures proposed in this work
are practical, real-time systems which are influencing the development of today’s technology,
including autonomous vehicles, augmented reality, medical imaging, drones and smart-city
infrastructure. Moreover, being able to build intelligent vision models may contribute to our
understanding of the neuroscience behind visual intelligence (Sterling and Laughlin, 2015).

1
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1.2 Approach

Deep learning (Goodfellow et al., 2016) is now ubiquitous in the field of computer vision.
As a machine learning tool, deep neural networks are very effective at understanding high-
dimensional data, such as images. They learn representations by encoding the input through
a number of non-linear layers and sub-sampling operations, resulting in powerful image-level
understanding and recognition capabilities. Deep learning models were first used in computer
vision for image recognition tasks (Krizhevsky et al., 2012; LeCun, 1988). However, the
science of computer vision aims to build machines which can see. This requires models
which can extract richer information from images and video than recognition. In general,
applying these deep learning models from recognition to other problems in computer vision
is significantly more challenging.

This thesis shows how to formulate deep learning models for many core computer vision
tasks, and advances the state-of-the-art of each task with practical, real-time models:

1. Semantic segmentation (what is around us),

2. Instance segmentation (where objects are),

3. Monocular metric depth (how far away objects are),

4. Camera pose (where we are),

5. Stereo disparity (depth from binocular vision),

6. Optical flow (motion of objects in an image),

7. Video semantic segmentation (where objects are in video).

An overview of these results is given in Figure 1.1. Collectively, these new methods ad-
vance state-of-the-art, with many out-performing previously published approaches to these
problems.

The algorithms we propose rely on deep learning (Hinton et al., 2006). Deep learning
has emerged as a powerful paradigm for understanding high dimensional data, such as visual
imagery. It is now the core technology behind natural language understanding (Sutskever
et al., 2014), image recognition (Krizhevsky et al., 2012), speech recognition (Hinton et al.,
2012) and many other challenging, high dimensional problems in biology and physics
(Ciodaro et al., 2012; Helmstaedter et al., 2013; Leung et al., 2014).

Deep learning models form hierarchical layers of increasing levels of abstraction (Good-
fellow et al., 2016). These models are typically optimised by propagating a training signal
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(a) Scene Understanding — understanding the geometry and se-
mantics of a scene. Clockwise from top-left: input image, seman-
tic segmentation, depth prediction, instance segmentation.

(b) Localisation — estimating
the camera’s 3D position and
orientation from an image.

(c) Uncertainty — understanding the prediction’s confidence and what the model does not know.
From left: input image, semantic segmentation, model uncertainty (where blue represents certain and
more red colours are uncertain predictions). The model exhibits increased uncertainty in distance
objects and around object boundaries.

Fig. 1.1 Examples of the variety of algorithms developed in this thesis. (a) shows a scene
understanding system from Chapter 2. (b) shows a localisation system which can determine
the camera’s 3D position and orientation in space from Chapter 3. (c) shows a semantic
segmentation system which is aware of its uncertainty from Chapter 2.

from the output all the way to the input. This is known as end-to-end learning. End-to-end
learning models have many advantages. Firstly, they can obtain higher performance by
optimising all layers with regards to the end goal. Secondly, they are more scalable and
can reduce engineering effort by enabling learning from vast amounts of training data. We
show that we can formulate and train models on many computer vision tasks with end-to-end
learning, outperforming prior approaches.

But end-to-end learning has problems too. It is often not good for data efficiency,
interpretability or safety (McAllister et al., 2017). This thesis makes two observations which
challenge the weaknesses of end-to-end learning:

• We do not need to learn everything from scratch, we know many things about the
world,

• We cannot explain everything from our data and we need to know what our model
does not know.
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In this thesis, we focus on these ideas using concepts from geometry and uncertainty. These
ideas are elaborated on in the next few sections.

1.2.1 Machine Learning in Computer Vision

Let us consider two arguments which motivate the use of machine learning approaches, in
particular deep learning, to complicated computer vision problems.

First, as the most powerful demonstration of perception, how does the human visual
pathway develop? Surprisingly, we are born without the ability to see (Gibson and Walk,
1960). Infant humans learn through a mixture of semi-supervised and unsupervised learning
(Kellman and Arterberry, 2006). It typically takes three months to learn colour and depth per-
ception. Object detection can take nine to twelve months. Suppose that an infant experiences
one saccade (visual experience) per second of their first year of existence. This amounts to
1 saccade/s× 3600 sec/hour× 8 h/day× 365 days/year = 10,000,000 training examples in
the first year of their life. Interestingly, this size is of the same order of magnitude as one
of the largest computer vision datasets, ImageNet (Deng et al., 2009). It is also the size of
the data which is required for today’s image recognition models to achieve super-human
performance (He et al., 2016). As our best example, the human visual system learns to see —
through nurture, not nature.

Secondly, it simply is not scalable to hand-design an algorithm to support and adapt to
complicated and dynamic data such as our visual world. Modern computer vision algorithms
contain over 100 million parameters. Input data is very high dimensional, typically containing
several million pixels being streamed over time. To date, we have been unable to specify
hand-engineered rules to design top-performing architectures. To understand large amounts
of data at scale we need to learn.

While there are many examples of machine learning models, deep convolutional neural
networks (Fukushima, 1979; Krizhevsky et al., 2012) are most effective for vision tasks.
Convolutional neural networks are a subset of deep learning which are particularly useful
for computer vision because they are spatially invariant. Algorithms like stochastic gradient
descent (Kiefer et al., 1952) and backpropagation (Rumelhart et al., 1986) can train networks
containing millions of parameters. These networks can be optimised from a loss function
formulated from supervised labelled training data or unsupervised learning.

Deep learning models have typically been restricted to classification settings. They excel
at sub-sampling data and expanding feature dimensions to make classifications at an image
level (Krizhevsky et al., 2012). Applying these models to other problems in computer vision
is more challenging. This is because other computer vision tasks require representations
for recognition, registration or reconstruction (Cipolla et al., 2010). Standard recognition
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encoder networks (He et al., 2004; Krizhevsky et al., 2012; Simonyan et al., 2013) cannot
be naively applied to these domains. This thesis proposes a broader range of deep learning
architectures for many other computer vision problems.

Finally, there is an interesting comparison between deep learning models and the human
visual system. The human visual cortex processes images from the retina initially through
the V1-V4 and IT cortex (Hubel and Wiesel, 1962). Evidence shows that hierarchical
representations are formed at increasing levels of abstraction (edges, lines, contours, objects,
scenes) (Hubel and Wiesel, 1962). Similar levels of abstraction are seen with increasing
convolutional neural network depth (Zeiler and Fergus, 2014).

1.2.2 Geometry in Computer Vision

Geometry is concerned with questions of shape, size, relative position of figures and the
properties of space. In computer vision, geometry is used to describe the structure and shape
of the world. Specifically, it concerns measures such as depth, volume, shape, pose, disparity,
motion or optical flow. We understand the mathematics of geometry very well (Faugeras,
1993; Hartley and Zisserman, 2000; Koenderink, 1990). Consequently, there are a lot of
complex relationships, such as depth and motion, which do not need to be learned from
scratch with deep learning. By building architectures which use this knowledge, we can
simplify the learning problem.

The alternative paradigm to geometry is using semantic representations. Semantic
representations use a language to describe relationships in the world. For example, we might
describe an object as a ‘cat’ or a ‘dog’. Geometry has two attractive characteristics over
semantics:

• Geometry can be directly observed. We see the world’s geometry directly using
vision. At the most basic level, we can observe motion and depth directly from a
video by following corresponding pixels between frames (Koenderink and Van Doorn,
1991). Other interesting examples include observing shape from shading (Horn and
Brooks, 1989) or depth from stereo disparity (Scharstein and Szeliski, 2002). In
contrast, semantic representations are often proprietary to a human language, with
labels corresponding to a limited set of nouns, which cannot be directly observed from
the world.

• Geometry is based on continuous quantities. For example, we can measure depth
in meters or disparity in pixels. In contrast, semantic representations are largely
discretised quantities or binary labels.
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With these properties, we show that we can use geometry to improve performance (Chapter 3
and Chapter 4) and for unsupervised learning, without human-annotated labels (Chapter 4
and Chapter 5).

However, geometry alone cannot form a robust vision system. This is because models
must learn representations which are robust to noise and outliers. Deep learning is pow-
erful at learning representations which are robust to outliers and other nuisance variables.
Additionally, models also need to be aware of the inherent uncertainty in the data.

1.2.3 Uncertainty in Computer Vision

Understanding what a model does not know is a critical part of many machine learning
systems (Ghahramani, 2015). Uncertainty is important to improve trustworthiness and safety
of these systems (McAllister et al., 2017). Unfortunately, today’s deep learning algorithms
are usually unable to understand their uncertainty. These models are often taken blindly and
assumed to be accurate, which is not always the case. For example, in two recent situations
this has had disastrous consequences.

• In May 2016 the world tragically experienced the first fatality from an assisted driving
system. According to the manufacturer’s blog, ‘Neither Autopilot nor the driver
noticed the white side of the tractor trailer against a brightly lit sky, so the brake was
not applied’ (NHTSA, 2017).

• In July 2015, an image classification system erroneously identified two African Ameri-
can humans as gorillas, raising concerns of racism and discrimination (Guynn, 2015).

If both these algorithms could assign a high level of uncertainty to their erroneous
predictions, then each system may have been able to make better decisions and likely
avoid disaster. Unfortunately, traditional machine learning approaches to understanding
uncertainty, such as Gaussian processes (Rasmussen and Williams, 2006), do not scale to
high dimensional inputs like images and videos. To effectively understand this data, we need
deep learning. But deep learning struggles to model uncertainty.

One of the techniques used in this thesis to model uncertainty is Bayesian deep learning
(MacKay, 1992) which provides a deep learning framework which can model uncertainty.
Bayesian deep learning is a field at the intersection between deep learning and Bayesian
probability theory. It offers principled uncertainty estimates from deep learning architectures.
These deep architectures can model complex tasks by leveraging the hierarchical representa-
tion power of deep learning, while also being able to infer complex multi-modal posterior
distributions. Probabilistic deep learning models typically form uncertainty estimates by
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either placing distributions over model weights, or by learning a direct mapping to probabilis-
tic outputs. In this thesis we show how to formulate accurate and scalable computer vision
models which can understand the model’s uncertainty with Bayesian deep learning.

1.3 Contributions

To summarise, the contributions of this thesis are as follows:

• We demonstrate how to formulate many challenging computer vision problems with
end-to-end deep learning. We show the performance of these models significantly
improves over traditional approaches.

• We show how to improve performance of these models by leveraging the problem’s
geometry. We demonstrate that this reduces the amount of training data required and
improves the generalisation of these models to novel examples.

• Finally, for practical and safe systems, it is important to understand our model’s
uncertainty. We show how to quantify uncertainty in deep learning computer vision
models with Bayesian deep learning and probabilistic modelling.

1.4 Co-Authored Papers

Some extracts from this thesis appear in the following co-authored publications and preprints.
Chapter 2 contains work from:

• Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla. SegNet: A Deep Convolu-
tional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.

• Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision? Advances in Neural Information Processing Systems,
2017.

• Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task Learning Using Uncer-
tainty to Weigh Losses for Scene Geometry and Semantics. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

Chapter 3 is adapted from:
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• Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Net-
work for Real-Time 6-DOF Camera Relocalization. Proceedings of the International
Conference on Computer Vision, 2015.

• Alex Kendall and Roberto Cipolla. Modelling Uncertainty in Deep Learning for
Camera Relocalization. Proceedings of the International Conference on Robotics and
Automation, 2016.

• Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression
with deep learning. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

Chapter 4 extends:

• Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy,
Abraham Bachrach, and Adam Bry. End-to-End Learning of Geometry and Context
for Deep Stereo Regression. Proceedings of the International Conference on Computer
Vision, 2017.

And finally, Chapter 5 is adapted from:

• Alex Kendall and Roberto Cipolla. Learning Semantics, Motion and Geometry for
Video Scene Understanding. Under Review, 2017.

1.5 Thesis Structure

The outline of the thesis is as follows. The following four chapters discuss core computer
vision tasks: scene understanding in Chapter 2, localisation in Chapter 3, stereo vision in
Chapter 4, video and motion in Chapter 5. For each chapter’s topic, we review the prior art.
We introduce formulations for end-to-end deep learning architectures. We discuss how to
improve these end-to-end models with notions of the problem’s geometry. Finally, we show
how to capture model uncertainty. In Chapter 6, we make overall conclusions, discuss the
application of this technology and suggest directions for future research.
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Chapter 2

Scene Understanding

2.1 Introduction

In this chapter, we address the problem of scene understanding. Scene understanding
is a task which is fundamental to computer vision. It requires extracting information about
what is where (Marr, 1982). Visual scene understanding algorithms must extract information
about objects and their contextual relationships from the observed environment. Scene
understanding requires knowledge of semantics and geometry and can be broken down
into many subtasks. In this work we focus on the tasks of semantic segmentation, instance
segmentation and depth prediction. Collectively, these three representations provide a fine-
grained, per-pixel representation of objects and their geometry.

We begin the chapter by proposing a deep convolutional encoder-decoder architecture,
SegNet, capable of learning per-pixel output. Motivated by the problem of semantic seg-
mentation, we analyse different architectures for upsampling features and producing dense
pixel-wise output. We benchmark the efficacy of SegNet on many datasets on road scene,
indoor and object segmentation datasets. Some results are shown in Figure 2.1.

For practical systems, it is important to understand what our models do not know.
In Section 2.4, we discuss two types of uncertainty; aleatoric and epistemic uncertainty
(Der Kiureghian and Ditlevsen, 2009). We derive deep learning models which can capture
both forms of uncertainty using Bayesian deep learning (MacKay, 1992) and probabilistic
modelling. We build models for semantic segmentation and per-pixel depth estimation with
these ideas. We show modelling uncertainty gives an improvement in performance. We

In this Chapter, Section 2.2 and Section 2.3 was collaborative work with Vijay Badrinarayanan and Roberto
Cipolla and was published in (Badrinarayanan et al., 2017). Section 2.4 and Section 2.5 was collaborative work
with Yarin Gal and was published in (Kendall and Gal, 2017) and (Kendall et al., 2017b), respectively.
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Fig. 2.1 SegNet predictions on indoor and outdoor scene test samples from the wild. To try our
system yourself, please see our online web demo at http://mi.eng.cam.ac.uk/projects/segnet/.

empirically evaluate the quality of these uncertainty metrics and their properties with respect
to novel examples, with increasing distinction from the training dataset.

However, scene understanding requires joint knowledge of semantics and geometry. In
Section 2.5, we present a framework for designing models capable of learning many tasks
from a single representation, using multi-task learning. We make the observation that the
relative weighting of each task’s loss greatly influences performance. We derive a loss
function which learns the task weights using probabilistic modelling. The final model jointly
predicts semantic segmentation, instance segmentation and depth regression. Interestingly,
we show that jointly learning these tasks in a single multi-task model out-performs equivalent
models individually trained on each task.

2.2 Semantic Segmentation

We begin by introducing the task of semantic segmentation, which is a core task in scene
understanding. Semantic pixel-wise segmentation requires an estimate of each pixel’s seman-
tic class (see Figure 2.1). It is an active topic of research, fuelled by challenging datasets
(Brostow et al., 2009; Cordts et al., 2016; Everingham et al., 2015; Geiger et al., 2012;
Silberman et al., 2012; Song et al., 2015). Before the arrival of deep learning, the best per-
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2.2 Semantic Segmentation

forming methods mostly relied on hand engineered features classifying pixels independently.
Typically, an image patch was fed into a classifier, e.g. random forests (Brostow et al., 2008;
Shotton et al., 2008) or boosting (Ladickỳ et al., 2010; Sturgess et al., 2009), to predict the
class probabilities of the centre pixel. Features based on appearance (Shotton et al., 2008)
or motion and appearance (Brostow et al., 2008; Ladickỳ et al., 2010; Sturgess et al., 2009)
have been explored. These per-pixel noisy predictions (often called unary terms) from the
classifiers are then smoothed by using pair-wise (or higher order) conditional random fields
(CRFs) (Ladickỳ et al., 2010; Sturgess et al., 2009) to improve the accuracy. More recent
approaches have aimed to produce high quality unaries by trying to predict the labels for
all the pixels in a patch as opposed to only the centre pixel. This improves the results of
random forest based unaries (Kontschieder et al., 2011), but reduces performance on thin
structures. Dense depth maps have also been used as input for classification using Random
Forests (Zhang et al., 2010). Another approach argues for the use of a combination of popular
hand designed features and spatio temporal super-pixels to obtain higher accuracy (Tighe
and Lazebnik, 2013).

Indoor RGB-D pixel-wise semantic segmentation has also gained popularity since the
release of the NYU dataset (Silberman et al., 2012) which contains labelled RGB-D data
collected from a Kinect sensor. Many papers demonstrate that inputting depth modality
significantly improves segmentation performance (Gupta et al., 2013; Hermans et al., 2014;
Ren et al., 2012; Silberman et al., 2012). However, all these methods use hand-engineered
features for classifying RGB-D images.

The success of deep convolutional neural networks for object classification has more
recently led to researchers to exploit their feature learning capabilities for structured pre-
diction problems such as segmentation. There have also been attempts to apply networks
designed for object categorization to segmentation, particularly by replicating the deepest
layer features in blocks to match image dimensions (Farabet et al., 2012, 2013; Gatta et al.,
2014; Grangier et al., 2009). However, the resulting classification is coarse (Grangier et al.,
2009). Another approach using recurrent neural networks (Pinheiro and Collobert, 2014)
merges several low resolution predictions to create input image resolution predictions. These
techniques are already an improvement over hand engineered features (Farabet et al., 2013)
but their ability to delineate boundaries is poor.

Newer deep architectures (Eigen and Fergus, 2015; Hong et al., 2015; Long et al., 2015;
Noh et al., 2015; Zheng et al., 2015) particularly designed for segmentation have advanced
the state-of-the-art by learning to decode or map low resolution image representations to
pixel-wise predictions. These methods rely on pre-trained features from the large ImageNet
object classification dataset (Deng et al., 2009). For example, Fully Convolutional Networks
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(FCN) (Long et al., 2015) learn to up-sample its input feature map(s) and combines them
with the corresponding encoder feature map to produce a dense output. It has a large number
of trainable parameters in the encoder network (134M) but a very small decoder network
(0.5M). The overall large size of this network makes it hard to train end-to-end on a relevant
task. Therefore, the authors use a stage-wise training process. Each decoder in the decoder
network is progressively added to an existing trained network. The network is grown until no
further increase in performance is observed.

The approach in FCN forms the core segmentation engine for a number of other ap-
proaches (Chen et al., 2016; Liu et al., 2015c; Schwing and Urtasun, 2015; Zheng et al.,
2015). These methods append CRFs as a post-processing method to clean the segmentation.
These methods are slow as they require either MAP inference over a CRF (Lin et al., 2015),
(Schwing and Urtasun, 2015) or aids such as region proposals (Noh et al., 2015) for inference.
We believe the perceived performance increase obtained by using a CRF is due to the lack of
good decoding techniques in their core feed-forward segmentation engine.

Multi-scale deep architectures are also being pursued (Eigen and Fergus, 2015; Hariharan
et al., 2015; Lin et al., 2015; Liu et al., 2015c). The common idea is to use features extracted
at multiple scales to provide both local and global context (Mostajabi et al., 2014). Feature
maps from the early encoding layers retain more high frequency detail leading to sharper
class boundaries. Some of these architectures are difficult to train due to their large parameter
size (Eigen and Fergus, 2015). Again, a multi-stage training process is employed along with
data augmentation. Inference is also expensive with multiple convolutional pathways for
feature extraction.

All of the latest state-of-the-art semantic segmentation models use supervised deep learn-
ing (Badrinarayanan et al., 2017; Long et al., 2015), benefiting from residual architectures
(He et al., 2016; Huang et al., 2017). Recent work has focused on improving the receptive
field of features and providing them with more context for semantic reasoning, for example
using dilated convolutions (Yu and Koltun, 2016) and pyramid spatial pooling (Zhao et al.,
2017). We have also seen semantic segmentation combined with other tasks, such as instance
segmentation (He et al., 2017) and geometry (see Section 2.5) in multi-task learning settings.

In the next section, we introduce the SegNet architecture, which was one of the first
end-to-end deep convolutional neural networks for semantic segmentation. We compare
the different decoding techniques to form pixel-wise prediction with deep learning and
benchmark our approach on a number of challenging datasets.
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Convolutional Encoder-Decoder
 

Pooling Indices

Input

Segmentation

Output

Conv + Batch Normalisation + ReLU
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Fig. 2.2 An illustration of the SegNet architecture. There are no fully connected layers
and hence it is only convolutional. The decoder upsamples the encoded features using the
corresponding pooling indices from the encoder to produce sparse feature maps. It then
performs convolution with a trainable filter bank to densify the feature map. The final decoder
output feature maps are fed to a softmax classifier for pixel-wise classification.

2.3 SegNet Architecture

The latest semantic segmentation architectures have tried to directly adopt deep architectures
designed for category prediction to pixel-wise labelling (Farabet et al., 2013; Long et al.,
2015). The results, although very encouraging, appear coarse (Chen et al., 2016). This
is primarily because max-pooling and sub-sampling reduce feature map resolution in the
encoder for recognition tasks. In this section, we design SegNet, a deep convolutional
encoder-decoder architecture capable of outputting pixel-wise labels at full resolution. Our
motivation to design SegNet arises from this need to map low resolution features to input
resolution for pixel-wise classification. This mapping must produce features which are useful
for accurate boundary localization.

Our architecture, SegNet, is designed to be a core segmentation engine for pixel-wise
semantic segmentation. It is primarily motivated by road scene understanding applications
which require the ability to model appearance (road, building), shape (cars, pedestrians)
and understand the spatial-relationship (context) between different classes such as road and
side-walk. In typical road scenes, the majority of the pixels belong to large classes such
as road, building or sky and hence the network must produce smooth segmentations. The
engine must also have the ability to delineate moving and other objects based on their shape
despite their small size. Hence it is important to retain boundary information in the extracted
image representation. From a computational perspective, it is necessary for the network to be
efficient in terms of both memory and computation time during inference. It must also be
able to train end-to-end in order to jointly optimise all the weights in the network using an
efficient weight update technique such as stochastic gradient descent (SGD) (Bottou, 2010).
Networks that are trained end-to-end or equivalently those that do not use multi-stage training
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(Long et al., 2015) or other supporting aids such as region proposals (Noh et al., 2015) help
establish benchmarks that are more easily repeatable. The design of SegNet arose from a
need to match these criteria.

SegNet has an encoder network and a corresponding decoder network, followed by
a final pixel-wise classification layer. This architecture is illustrated in Figure 2.2. The
encoder network consists of 13 convolutional layers which is topologically identical to the
convolutional layers in VGG16 (Simonyan and Zisserman, 2014). We can therefore initialize
the training process from weights trained for classification on large datasets (Deng et al.,
2009). We remove the fully connected layers of VGG16 which makes the SegNet encoder
network significantly smaller (from 134 million parameters to 14.7 million) than many other
recent architectures (Hong et al., 2015; Liu et al., 2015c; Long et al., 2015; Noh et al., 2015).

The key component of SegNet is the decoder network which consists of a hierarchy
of decoders one corresponding to each encoder. Of these, the appropriate decoders use
the max-pooling indices received from the corresponding encoder to perform non-linear
upsampling of their input feature maps. This idea was inspired from an architecture designed
for unsupervised feature learning (Ranzato et al., 2007). Reusing max-pooling indices in
the decoding process has several practical advantages; (i) it improves boundary delineation,
(ii) it reduces the number of parameters enabling end-to-end training, and (iii) this form of
upsampling can be incorporated into any encoder-decoder architecture such as Long et al.
(2015) or Zheng et al. (2015) with slight modification. The final decoder output is fed to a
multi-class softmax classifier to produce class probabilities for each pixel independently.

Each encoder in the encoder network performs convolution with a filter bank to produce
a set of feature maps. These are then batch normalized (Ioffe and Szegedy, 2015)). Then
an element-wise rectified-linear non-linearity (ReLU) max(0,x) is applied. Following that,
max-pooling with a 2× 2 window and stride 2 (non-overlapping window) is performed
and the resulting output is sub-sampled by a factor of 2. Max-pooling is used to achieve
translation invariance over small spatial shifts in the input image. Sub-sampling results in
a large receptive field for each pixel in the feature map. However, sub-sampling reduces
spatial resolution of the features which is not beneficial for segmentation where boundary
delineation is vital. Therefore, it is necessary to capture and store boundary information in
the encoder feature maps before sub-sampling is performed. If memory during inference is
not constrained, then all the encoder feature maps (after sub-sampling) can be stored. This is
usually not the case in practical applications and hence we propose a more efficient way to
store this information. It involves storing only the max-pooling indices, i.e, the locations of
the maximum feature value in each pooling window is memorized for each encoder feature
map. In principle, this can be done using 2 bits for each 2×2 pooling window and is thus
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much more efficient to store as compared to memorizing feature map(s) in float precision
(such as U-Net (Ronneberger et al., 2015)). As we show later in this work, this lower memory
storage results in a slight loss of accuracy but is still suitable for practical applications.

The appropriate decoder in the decoder network upsamples its input feature map(s)
using the memorized max-pooling indices from the corresponding encoder feature map(s).
This step produces sparse feature map(s). This SegNet decoding technique is illustrated in
Figure 2.3. These feature maps are then convolved with a trainable decoder filter bank to
produce dense feature maps. A batch normalization step is then applied to each of these maps.
Note that the decoder corresponding to the first encoder (closest to the input image) produces
a multi-channel feature map, although its encoder input has 3 channels (RGB). This is unlike
the other decoders in the network which produce feature maps with the same number of size
and channels as their encoder inputs. The high dimensional feature representation at the
output of the final decoder is fed to a trainable soft-max classifier. This soft-max classifies
each pixel independently. The output of the soft-max classifier is a K channel image of
probabilities where K is the number of classes. The predicted segmentation corresponds to
the class with maximum probability at each pixel.

In the following Sections, we evaluate the performance of SegNet on a number of datasets
(Everingham et al., 2015; Hariharan et al., 2011) and scene understanding challenges such
as CamVid road scene segmentation (Brostow et al., 2009). We analyse different decoding
techniques and the practical trade-offs when designing segmentation architecture. In addition,
we present a real-time online demo of road scene segmentation into 11 classes of interest
for autonomous driving (see Figure 2.1). Some example test results produced on randomly
sampled road scene images from the internet are shown in Figure 2.1.

2.3.1 Decoder Variants

One of the main contributions of this Section is our analysis of decoding techniques for
semantic segmentation. Most recent deep architectures for segmentation have identical
encoder networks, i.e. VGG16 (Simonyan and Zisserman, 2014) or ResNet101 (He et al.,
2016), but differ in the form of the decoder network, training and inference. Another
common feature is they have trainable parameters in the order of hundreds of millions and
thus encounter difficulties in performing end-to-end training (Noh et al., 2015). The difficulty
of training these networks has led to multi-stage training (Long et al., 2015), appending
networks to a pre-trained core segmentation engine such as FCN (Zheng et al., 2015), use of
supporting aids such as region proposals for inference (Noh et al., 2015), disjoint training of
classification and segmentation networks (Hong et al., 2015) and use of additional training
data for pre-training (Liu et al., 2015c) (Mottaghi et al., 2014) or for full training (Zheng et al.,
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Fig. 2.3 An illustration of SegNet and FCN (Long et al., 2015) decoders. a,b,c,d correspond
to values in a feature map. SegNet uses the max pooling indices to upsample (without
learning) the feature map(s) and convolves with a trainable decoder filter bank. FCN
upsamples by learning to deconvolve the input feature map and adds the corresponding
encoder feature map to produce the decoder output. This feature map is the output of the
max-pooling layer (includes sub-sampling) in the corresponding encoder. Note that there are
no trainable decoder filters in FCN.

2015). In addition, performance boosting post-processing techniques (Chen et al., 2016)
have also been popular. Although all these factors improve performance on challenging
benchmarks (Everingham et al., 2015), it is unfortunately difficult from their quantitative
results to disentangle the key design factors necessary to achieve good performance. We
therefore analyse many segmentation decoders in a controlled setting.

In order to analyse SegNet and compare its performance with other decoder variants
we use a smaller version of SegNet, termed SegNet-Basic, which has 4 encoders and 4
decoders. All the encoders in SegNet-Basic perform max-pooling and sub-sampling and the
corresponding decoders upsample its input using the received max-pooling indices. Batch
normalization is used after each convolutional layer in both the encoder and decoder network.
No biases are used after convolutions and no ReLU non-linearity is present in the decoder
network. Further, a constant kernel size of 7×7 over all the encoder and decoder layers is
chosen to provide a wide context for smooth labelling i.e. a pixel in the deepest layer feature
map (layer 4) can be traced back to a context window in the input image of 106×106 pixels.
This small size of SegNet-Basic allows us to explore many different variants (decoders) and
train them in reasonable time. Similarly we create FCN-Basic, a comparable version of FCN
for our analysis which shares the same encoder network as SegNet-Basic but with the FCN
decoding technique in the corresponding decoders.
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2.3 SegNet Architecture

On the left in Figure 2.3 is the decoding technique used by SegNet (also SegNet-Basic),
where there is no learning involved in the upsampling step. However, the upsampled maps
are convolved with trainable multi-channel decoder filters to densify the sparse inputs.
Each decoder filter has the same number of channels as the number of upsampled fea-
ture maps. A smaller variant is one where the decoder filters are single channel, i.e they
only convolve their corresponding upsampled feature map. This variant (SegNet-Basic-
SingleChannelDecoder) reduces the number of trainable parameters and inference time
significantly.

On the right in Figure 2.3 is the FCN (also FCN-Basic) decoding technique (Long et al.,
2015). The important design element of the FCN model is the dimensionality reduction step
of the encoder feature maps. This compresses the encoder feature maps which are then used
in the corresponding decoders. Dimensionality reduction of the encoder feature maps, say of
64 channels, is performed by convolving them with 1×1×64×K trainable filters, where K
is the number of classes. The compressed K channel final encoder layer feature maps are
the input to the decoder network. In a decoder of this network, upsampling is performed by
convolution using a trainable multi-channel upsampling kernel. We set the kernel size to
8×8. This manner of upsampling is also termed as sub-pixel convolution, deconvolution or
transposed convolution. Note that in SegNet the multi-channel convolution using trainable
decoder filters is performed after upsampling to densifying feature maps. The upsampled
feature map in FCN is then added to the corresponding resolution encoder feature map to
produce the output decoder feature map. The upsampling kernels are initialized using bilinear
interpolation weights (Long et al., 2015).

The FCN decoder model requires storing encoder feature maps during inference. This
can be memory intensive, for e.g. storing 64 feature maps of the first layer of FCN-Basic at
180×240 resolution in 32 bit floating point precision takes 11MB. This can be made smaller
using dimensionality reduction to the 11 feature maps which requires ≈ 1.9MB storage.
SegNet on the other hand requires almost negligible storage cost for the pooling indices
(0.17MB if stored using 2 bits per 2×2 pooling window). We can also create a variant of the
FCN-Basic model which discards the encoder feature map addition step and only learns the
upsampling kernels (FCN-Basic-NoAddition).

In addition to the above variants, we study upsampling using fixed bilinear interpolation
weights which therefore requires no learning for upsampling (Bilinear-Interpolation). At
the other extreme, we can add 64 encoder feature maps at each layer to the corresponding
output feature maps from the SegNet decoder to create a more memory intensive variant
of SegNet (SegNet-Basic-EncoderAddition). Another and more memory intensive FCN-
Basic variant (FCN-Basic-NoDimReduction) is where there is no dimensionality reduction
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performed for the encoder feature maps. Finally, please note that to encourage reproduction
of our results we release the Caffe (Jia et al., 2014) implementation of all the variants2.

We also tried other generic variants where feature maps are simply upsampled by replica-
tion (Farabet et al., 2013), or by using a fixed (and sparse) array of indices for upsampling.
These performed quite poorly in comparison to the above variants. A variant without max-
pooling and sub-sampling in the encoder network (decoders are redundant) consumes more
memory, takes longer to converge and performs poorly.

2.3.2 Training

We use the CamVid road scenes dataset (Brostow et al., 2009) to benchmark the performance
of the decoder variants. This dataset is small, consisting of 367 training and 233 testing
RGB images (day and dusk scenes) at 360×480 resolution. The challenge is to segment
11 classes such as road, building, cars, pedestrians, signs, poles, side-walk etc. We perform
local contrast normalization (Jarrett et al., 2009) to the RGB input.

The encoder and decoder weights were all initialized using the technique described in
He et al. (He et al., 2015). To train all the variants we use stochastic gradient descent
(SGD) with a fixed learning rate of 0.1 and momentum of 0.9 (Bottou, 2010) using our Caffe
implementation of SegNet-Basic (Jia et al., 2014). We train the variants until the training loss
converges. Before each epoch, the training set is shuffled and each mini-batch (12 images) is
then picked in order thus ensuring that each image is used only once in an epoch. We select
the model which performs highest on a validation dataset.

We use the cross-entropy loss (Long et al., 2015) as the objective function for training
the network. The loss is averaged up over all the pixels in a mini-batch which contain a
valid label. When there is large variation in the number of pixels in each class in the training
set (e.g road, sky and building pixels dominate the CamVid dataset) then there is a need to
weight the loss differently based on the true class. This is termed class balancing. We use
median frequency balancing where the weight assigned to a class in the loss function is the
ratio of the median of class frequencies computed on the entire training set divided by the
class frequency. Therefore, we weight each pixel’s loss by

α = median f req/ f req(c), (2.1)

where f req(c) is the number of pixels of class c in the dataset, divided by the total number of
pixels in images where c is present, and median f req is the median of these frequencies. This
implies that larger classes in the training set have a weight smaller than 1 and the weights of

2See http://mi.eng.cam.ac.uk/projects/segnet/ for our SegNet code and web demo.
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Median frequency balancing Natural frequency balancing
Encoder Infer

Variant Params (M) storage (MB) time (ms) G C IoU G C IoU
Fixed upsampling

Bilinear-Interpolation 0.625 0 24.2 77.9 61.1 43.3 82.7 52.5 43.8
Upsampling using max-pooling indices

SegNet-Basic 1.425 1x 52.6 82.7 62.0 47.7 84.0 54.6 46.3
SegNet-Basic-EncoderAddition 1.425 64x 53.0 83.4 63.6 48.5 84.2 56.5 47.7

SegNet-Basic-SingleChannelDecoder 0.625 1x 33.1 81.2 60.7 46.1 83.5 53.9 45.2
Learning to upsample (bilinear initialisation)

FCN-Basic 0.65 11x 24.2 81.7 62.4 47.3 83.9 55.6 45.0
FCN-Basic-NoAddition 0.65 n/a 23.8 80.5 58.6 44.1 82.3 53.9 44.2

FCN-Basic-NoDimReduction 1.625 64x 44.8 84.1 63.4 50.1 83.5 57.3 47.0
FCN-Basic-NoAddition-NoDimReduction 1.625 0 43.9 80.5 61.6 45.9 83.7 54.8 45.5

Table 2.1 Comparison of decoder variants on the CamVid dataset. We quantify the performance using global (G), class average (C)
and mean of intersection over union (IoU) metrics. The testing accuracies are shown as percentages for both natural frequency and
median frequency balanced training loss function. SegNet-Basic performs at the same level as FCN-Basic but requires only storing
max-pooling indices and is therefore more memory efficient during inference. Note that the theoretical memory requirement reported
is based only on the size of the first layer encoder feature map. Networks with larger decoders and those using the encoder feature
maps in full perform best, although they are least efficient.
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the smallest classes are the highest. We also experimented with training the different variants
without class balancing or equivalently using natural frequency balancing.

2.3.3 Analysis

To compare the quantitative performance of the different decoder variants, we use three
commonly used performance measures: global accuracy (G) which measures the percentage
of pixels correctly classified in the dataset, class average accuracy (C) is the mean of the
predictive accuracy over all classes and mean intersection over union (IoU) over all classes
as used in the Pascal VOC12 challenge (Everingham et al., 2015). The mean IoU metric is
the hardest metric since it penalizes false positive predictions unlike class average accuracy.
However, IoU metric is not optimized for directly through the class balanced cross-entropy
loss.

We test each variant after each 1000 iterations of optimization on the CamVid validation
set until the training loss converges. With a training mini-batch size of 12 this corresponds
to testing approximately every 33 epochs (passes) through the training set. We select the
iteration wherein the global accuracy is highest amongst the evaluations on the validation
set. We report all the three measures of performance at this point on the held-out CamVid
test set. Although we use class balancing while training the variants, it is still important to
achieve high global accuracy to result in an overall smooth segmentation. Another reason is
that the contribution of segmentation towards autonomous driving is mainly for delineating
classes such as roads, buildings, side-walk, sky. These classes dominate the majority of the
pixels in an image and a high global accuracy corresponds to good segmentation of these
important classes. We also observed that reporting the numerical performance when class
average is highest can often correspond to low global accuracy indicating a perceptually
noisy segmentation output.

In Table 2.1 we report the numerical results of our analysis. We also show the size of
the trainable parameters and the highest resolution feature map or pooling indices storage
memory, i.e, of the first layer feature maps after max-pooling and sub-sampling. We show
the average time for one forward pass with our Caffe implementation, averaged over 50 mea-
surements using a 360×480 input on an NVIDIA Titan GPU with cuDNN v3 acceleration.
We note that the upsampling layers in the SegNet variants are not optimised using cuDNN
acceleration. We show the results for both testing and training for all the variants at the
selected iteration. The results are also tabulated without class balancing (natural frequency)
for training and testing accuracies. Below we analyse the results with class balancing.

From the Table 2.1, we see that bilinear interpolation based upsampling without any
learning performs the worst based on all the three measures of accuracy. All the other
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methods which either use learning for upsampling (FCN-Basic and variants) or learning
decoder filters after upsampling (SegNet-Basic and its variants) perform significantly better.
This emphasizes the need to learn decoders for segmentation. This is also supported by
experimental evidence gathered by other authors when comparing FCN with SegNet-type
decoding techniques (Noh et al., 2015).

When we compare SegNet-Basic and FCN-Basic we see that both perform equally well
on this test over all the three measures of accuracy. The difference is that SegNet uses
less memory during inference since it only stores max-pooling indices. On the other hand
FCN-Basic stores encoder feature maps in full which consumes much more memory (11
times more). SegNet-Basic has a decoder with 64 feature maps in each decoder layer. In
comparison FCN-Basic, which uses dimensionality reduction, has fewer (11) feature maps
in each decoder layer. This reduces the number of convolutions in the decoder network and
hence FCN-Basic is faster during inference (forward pass). From another perspective, the
decoder network in SegNet-Basic makes it overall a larger network than FCN-Basic. This
endows it with more flexibility and hence achieves higher training accuracy than FCN-Basic
for the same number of iterations. Overall we see that SegNet-Basic has an advantage over
FCN-Basic when memory during inference is constrained but where inference time can be
compromised to an extent.

SegNet-Basic is most similar to FCN-Basic-NoAddition in terms of their decoders,
although the decoder of SegNet is larger. Both learn to produce dense feature maps, either
directly by learning to perform deconvolution as in FCN-Basic-NoAddition or by first
upsampling and then convolving with trained decoder filters. The performance of SegNet-
Basic is superior, in part due to its larger decoder size. Now, the accuracy of FCN-Basic-
NoAddition is also lower as compared to FCN-Basic. This shows that it is important to
capture the information present in the encoder feature maps for better performance. This can
also explain the reason why SegNet-Basic outperforms FCN-Basic-NoAddition.

The size of the FCN-Basic-NoAddition-NoDimReduction model is slightly larger than
SegNet-Basic and this makes it a fair comparison. The performance of this FCN variant is
poorer than SegNet-Basic in test but also its training accuracy is lower for the same number of
training epochs. This shows that using a larger decoder is not enough but it is also important
to capture encoder feature map information to learn better. Here it is also interesting to see
that SegNet-Basic has a competitive training accuracy when compared to larger models such
FCN-Basic-NoDimReduction.

Another interesting comparison between FCN-Basic-NoAddition and SegNet-Basic-
SingleChannelDecoder shows that using max-pooling indices for upsampling and an overall
larger decoder leads to better performance. This also lends evidence to SegNet being a
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good architecture for segmentation, particularly when there is a need to find a compromise
between storage cost or accuracy against inference time. In the best case, when both memory
and inference time is not constrained, larger models such as FCN-Basic-NoDimReduction
and SegNet-EncoderAddition are both more accurate than the other variants. Particularly,
discarding dimensionality reduction in the FCN-Basic model leads to the best performance
amongst the FCN-Basic variants. This once again emphasizes the trade-off involved between
memory and accuracy in segmentation architectures.

The last column of Table 2.1 show the result when no class balancing is used (natural
frequency). Here, we can observe that without weighting the results are poorer for all the
variants, particularly for class average accuracy and mean IoU metric. The global accuracy is
the highest without weighting since the majority of the scene is dominated by sky, road and
building pixels. Apart from this all the inference from the comparative analysis of variants
holds true for natural frequency balancing too. SegNet-Basic performs as well as FCN-Basic
and is better than the larger FCN-Basic-NoAddition-NoDimReduction. The bigger but less
efficient models FCN-Basic-NoDimReduction and SegNet-EncoderAddition perform better
than the other variants.

We can now summarize the above analysis with the following general points.

1. The best performance is achieved when encoder feature maps are stored in full.

2. When memory during inference is constrained, then compressed forms of encoder
feature maps (dimensionality reduction, max-pooling indices) can be stored and used
with an appropriate decoder (e.g. SegNet type) to improve performance.

3. Larger decoders increase performance for a given encoder network.

2.3.4 Benchmarking

We quantify the performance of SegNet on three different benchmarks using our Caffe
implementation 3. Through this process we demonstrate the efficacy of SegNet for various
scene segmentation tasks which have practical applications. In the first experiment, we
test the performance of SegNet on the CamVid road scene dataset (see Sec. 2.3.2 for more
information about this data). We use this result to compare SegNet with several methods
including Random Forests (Shotton et al., 2008), Boosting (Shotton et al., 2008; Sturgess
et al., 2009) in combination with CRF based methods (Ladickỳ et al., 2010). We also trained
SegNet on a larger dataset of road scenes collected from various publicly available datasets

3Our web demo and Caffe implementation is available for evaluation at http://mi.eng.cam.ac.uk/
projects/segnet/
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2.3 SegNet Architecture

(Brostow et al., 2009; Ros et al., 2015; Torralba et al., 2009) and show that this leads to a
large improvement in accuracy.

SUN RGB-D (Song et al., 2015) is a very challenging and large dataset of indoor scenes
with 5285 training and 5050 testing images. The images are captured by different sensors
and hence come in various resolutions. The task is to segment 37 indoor scene classes
including wall, floor, ceiling, table, chair, sofa etc. This task is made hard by the fact that
object classes come in various shapes, sizes and in different poses. There are frequent
partial occlusions since there are typically many different classes present in each of the test
images. These factors make this one of the hardest segmentation challenges. We only use
the RGB modality for our training and testing. Using the depth modality would necessitate
architectural modifications/redesign (Long et al., 2015). Also the quality of depth images
from current cameras require careful post-processing to fill-in missing measurements. They
may also require using fusion of many frames to robustly extract features for segmentation.

Pascal VOC12 (Everingham et al., 2015) is a RGB dataset for segmentation with 12031
combined training and validation images of indoor and outdoor scenes. The task is to segment
21 classes such as bus, horse, cat, dog, boat from a varied and large background class. The
foreground classes often occupy a small part of an image. The evaluation is performed
remotely on 1456 images.

In all three benchmark experiments, we select random 224×224 resolution crops from
the images for training. We used SGD with momentum to train SegNet. The learning rate
was fixed to 0.001 and momentum to 0.9. The mini-batch size was 4. The optimization was
performed for 100 epochs and then tested.

CamVid Road Scenes

A number of outdoor scene datasets are available for semantic parsing (Brostow et al., 2009;
Geiger et al., 2012; Gould et al., 2009; Russell et al., 2008). From these, we choose to
benchmark SegNet using the CamVid dataset (Brostow et al., 2009) because it contains
video sequences. This enables us to compare our proposed architecture with those which use
motion and structure (Brostow et al., 2008; Ladickỳ et al., 2010; Sturgess et al., 2009) and
video segments (Tighe and Lazebnik, 2013). We also combine (Brostow et al., 2009; Geiger
et al., 2012; Gould et al., 2009; Russell et al., 2008) to form an ensemble of 3433 images to
train SegNet for an additional benchmark.

The qualitative comparisons of SegNet-Basic and SegNet predictions with several promi-
nent algorithms (unaries, unaries+CRF) are shown in Figure 2.4 along with the input modal-
ities used to train the methods. The qualitative results show the ability of the proposed
architectures to segment small (cars, pedestrians, bicyclist) classes while producing a smooth
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Test samples 

Ground Truth 

Random Forest with 
SfM  
- Height above camera 
- Surface normals 
- Depth 
                 + 
Texton features 
            
Boosting with 
 - SfM (see c above) 
 -Texton 
 -Color 
 -HOG 
 -Location 
  

Boosting (see d above) 
+ pair-wise CRF 

Boosting (see d above) 
+ Higher order CRF 

Boosting (see d above) 
 + Detectors trained on 
  CamVid dataset 
 + CRF 

SegNet-Basic  with 
only local contrast 
normalized RGB as 
input (median freq. 
balancing) 

SegNet with only 
local contrast 
normalized RGB as 
input (pre-trained 
encoder, median 
freq. balancing) 

SegNet with only 
local contrast 
normalized RGB as 
input (pretrained 
encoder , median 
freq. balancing + 
large training set) 

Fig. 2.4 Results on CamVid day and dusk test samples. The evolution of results from various
patch based predictions (Brostow et al., 2008; Shotton et al., 2008), then CRF smoothing
models (Ladickỳ et al., 2010; Sturgess et al., 2009) and finally SegNet.
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segmentation of the overall scene. The unary-only methods (like Random Forests or Boost-
ing) which are trained to predict the label of the centre-pixel of a small patch produce low
quality segmentations. Smoothing unaries with CRF’s improve the segmentation quality
considerably with higher order CRF’s performing best. Although the CRF based results
appear smooth, upon close scrutiny, we see that shape segmentation of smaller but important
classes such as bicyclists, pedestrians are poor. In addition, natural shapes of classes like trees
are not preserved and the details like the wheels of cars are lost. More dense CRF models
(Koltun, 2011) can be better but with additional cost of inference. SegNet-Basic and SegNet
(without large dataset training) clearly indicate their ability to retain the natural shapes of
classes such as bicyclists, cars, trees, poles etc better than CRF based approaches. The
overall segmentation quality is also smooth except for the side-walk class. This is because the
side-walk class is highly varied in terms of size and texture and this cannot be captured with
a small training set. Another explanation could be that the size of the receptive fields of the
deepest layer feature units are smaller than their theoretical estimates (Liu et al., 2015c; Zhou
et al., 2014a) and hence unable to group all the side-walk pixels into one class. Illumination
variations also affect performance on cars in the dusk examples. However, several of these
issues can be ameliorated by using larger amounts of training data. In particular, we see that
smaller classes such as pedestrians, cars, bicyclists, column-pole are segmented better than
other methods in terms of shape retention. The side-walk class is also segmented smoothly.

The quantitative results in Table 2.2 show SegNet-Basic and SegNet obtain competitive
results, even without CRF based processing. This shows the ability of the deep architecture
to extract meaningful features from the input image and map it to accurate and smooth class
segment labels. SegNet is better in performance than SegNet-Basic although trained with the
same (small) training set. This indicates the importance of using pre-trained encoder weights
and a deeper architecture. Interestingly, the use of the bigger and deeper SegNet architecture
improves the accuracy of the larger classes as compared to SegNet-Basic and not the smaller
classes as one might expect. We also find that SegNet-Basic (Badrinarayanan et al., 2015)
trained in a layer-wise manner using L-BFGS (Nocedal and Wright, 2006) also performs
competitively and is better than SegNet-Basic trained with SGD (see Sec. 2.3.2). This is an
interesting training approach but needs further research in order for it scale to larger datasets.

The most interesting result is the approximately 15% performance improvement in class
average accuracy that is obtained with a large training dataset, obtained by combining Gould
et al. (2009), Russell et al. (2008), Brostow et al. (2009) and Geiger et al. (2012). The
mean of intersection over union metric is also very high. Correspondingly, the qualitative
results of SegNet (see Figure 2.4) are clearly superior to the rest of the methods. It is
able to segment both small and large classes well. In addition, there is an overall smooth
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SfM+Appearance (Brostow et al., 2008) 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1 n/a
Boosting (Sturgess et al., 2009) 61.9 67.3 91.1 71.1 58.5 92.9 49.5 37.6 25.8 77.8 24.7 59.8 76.4 n/a

Dense Depth Maps (Zhang et al., 2010) 85.3 57.3 95.4 69.2 46.5 98.5 23.8 44.3 22.0 38.1 28.7 55.4 82.1 n/a
Structured Random Forests (Kontschieder et al., 2011) n/a 51.4 72.5 n/a

Neural Decision Forests (Bulo et al., 2014) n/a 56.1 82.1 n/a
Local Label Descriptors (Yang et al., 2012) 80.7 61.5 88.8 16.4 n/a 98.0 1.09 0.05 4.13 12.4 0.07 36.3 73.6 n/a
Super Parsing (Tighe and Lazebnik, 2013) 87.0 67.1 96.9 62.7 30.1 95.9 14.7 17.9 1.7 70.0 19.4 51.2 83.3 n/a

SegNet-Basic 81.3 72.0 93.0 81.3 14.8 93.3 62.4 31.5 36.3 73.7 42.6 62.0 82.7 47.7
SegNet-Basic (layer-wise training (Badrinarayanan et al., 2015)) 75.0 84.6 91.2 82.7 36.9 93.3 55.0 37.5 44.8 74.1 16.0 62.9 84.3 n/a

SegNet 88.8 87.3 92.4 82.1 20.5 97.2 57.1 49.3 27.5 84.4 30.7 65.2 88.5 55.6
SegNet (3.5K dataset training) 73.9 90.6 90.1 86.4 69.8 94.5 86.8 67.9 74.0 94.7 52.9 80.1 86.7 60.4

CRF based approaches
Boosting + pairwise CRF (Sturgess et al., 2009) 70.7 70.8 94.7 74.4 55.9 94.1 45.7 37.2 13.0 79.3 23.1 59.9 79.8 n/a
Boosting+Higher order (Sturgess et al., 2009) 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8 n/a

Boosting+Detectors+CRF (Ladickỳ et al., 2010) 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8 n/a

Table 2.2 Quantitative results on CamVid (Brostow et al., 2009) consisting of 11 road scene categories. SegNet outperforms all the
other methods, including those using depth, video and/or CRF’s. In comparison with the CRF based methods SegNet predictions
are more accurate in 8 out of the 11 classes. It also shows a good ≈ 15% improvement in class average accuracy when trained on a
large dataset of 3.5K images and this sets a new benchmark for the majority of the individual classes. Particularly noteworthy are the
significant improvements in accuracy for the smaller/thinner classes.
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quality of segmentation much like what is typically obtained with CRF post-processing.
Although the fact that results improve with larger training sets is not surprising, the percentage
improvement obtained using a pre-trained encoder network and this training set indicates that
this architecture can potentially be deployed for practical applications. Our random testing
on urban and highway images from the internet (see Figure 2.1) demonstrates that SegNet
can absorb a large training set and generalize well to unseen images. It also indicates the
contribution of the prior (CRF) can be lessened when sufficient amount of training data is
made available.

SUN RGB-D Indoor Scenes

Road scene images have limited variation, both in terms of the classes of interest and their
spatial arrangements, especially when captured in a single sequence from a moving vehicle.
In comparison, images of indoor scenes are more complex since the view points can vary
significantly and there is less regularity in both the number of classes present in a scene and
their spatial arrangement. Another difficulty is caused by the widely varying sizes of the
object classes in the scene. Some test samples from the recent SUN RGB-D dataset (Song
et al., 2015) are shown in Figure 2.5. We observe some scenes with few large classes and
some others with dense clutter (bottom row and right). The appearance (texture and shape)
can also widely vary in indoor scenes. Therefore, we believe this is the hardest challenge for
segmentation architectures and methods in computer vision. Other challenges such as Pascal
VOC12 (Everingham et al., 2015) salient object segmentation have occupied researchers, but
indoor scene segmentation is more challenging and has more practical applications such as
in robotics. Our model advances state-of-the-art on the large SUN RGB-D dataset.

The qualitative results of SegNet on some images of indoor scenes of different types such
as bedroom, kitchen, bathroom, classroom etc. are shown in Figure 2.5. We see that SegNet
obtains sharp boundaries between classes when the scene consists of reasonable sized classes
but even when viewpoint changes are present (see bed segmentation from different view
points). This is particularly interesting since the input modality is only RGB. It indicates
the ability of SegNet to extract features from RGB images which are useful for view-point
invariant segmentation provided there is sufficient training data (here 5285 images). RGB
images are also useful to segment thinner structures such as the legs of chairs and tables,
lamps which is difficult to achieve using depth images from currently available sensors. It is
also useful to segment decorative objects such as paintings on the wall.

In Table 2.3 we report the quantitative results on the 37 class segmentation task. We
first note here that the other methods that have been benchmarked are not based on deep
architectures and they only report class average accuracy. The existing top performing

27



Scene Understanding

a) 

b) 

c) 

Test samples 

Ground truth 

SegNet 
predictions 

d) 

e) 

f) 

Test samples 

Ground truth 

SegNet  
predictions 

g) 

h) 

i) 

Test samples 

Ground truth 

SegNet  
Predictions 

Fig. 2.5 Qualitative assessment of SegNet predictions on RGB indoor test scenes from the
recently released SUN RGB-D dataset (Song et al., 2015). In this hard challenge, SegNet
predictions delineate inter class boundaries well for object classes in a variety of scenes
and their view-points. The segmentation quality is good when object classes are reasonably
sized (rows (c,f)) but suffers when the scene is more cluttered (last two samples in row (i)).
Unlabelled regions are shown as black in the ground truth.
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Method Global avg. Class avg. Mean IoU
RGB

Liu et al. (Liu et al., 2008) n/a 9.3 n/a
SegNet 70.3 35.6 26.3

RGB-D
Liu et al. (Liu et al., 2008) n/a 10.0 n/a
Ren et. al (Ren et al., 2012) n/a 36.3 n/a

Table 2.3 Quantitative comparison on the SUN RGB-D dataset which consists of 5050 test
images of indoor scenes with 37 classes. SegNet RGB-based predictions have a high global
accuracy and also match the RGB-D based predictions (Ren et al., 2012) in terms of class
average accuracy.

Wall Floor Cabinet Bed Chair Sofa Table Door Window Bookshelf Picture Counter Blinds
86.6 92.0 52.4 68.4 76.0 54.3 59.3 37.4 53.8 29.2 49.7 32.5 31.2
Desk Shelves Curtain Dresser Pillow Mirror Floor mat Clothes Ceiling Books Fridge TV Paper
17.8 5.3 53.2 28.8 36.5 29.6 0.0 14.4 67.7 32.4 10.2 18.3 19.2

Towel Shower curtain Box Whiteboard Person Night stand Toilet Sink Lamp Bathtub Bag
11.5 0.0 8.9 38.7 4.9 22.6 55.6 52.7 27.9 29.9 8.1

Table 2.4 Class average accuracy of SegNet predictions for the 37 indoor scene classes in the
SUN RGB-D benchmark dataset.

method (Ren et al., 2012) relies on hand engineered features using colour, gradients and
surface normals for describing super-pixels and then smooths super-pixel labels with a CRF.
For SegNet we achieve a high global accuracy which correlates with an overall smooth
segmentation. This also suggests that largest classes such as wall, floor, bed, table, sofa are
segmented well in spite of view-point changes and appearance variations. However, the class
average accuracy and mean IoU metric are poor, but at the same level as the hand engineered
method which also includes the depth channel as input. This shows that smaller and thinner
classes which have lesser training data are not segmented well. The individual class accuracies
are reported in Table 2.4. From these we see that there is a clear correlation between the
size and natural frequency of occurrence of classes and their individual accuracies. It is also
informative to note RGB input is useful to segment widely varying (shape, texture) categories
such as wall, floor, ceiling, table, chair, sofa with reasonable accuracy.

Pascal VOC12 Segmentation Challenge

The Pascal VOC12 segmentation challenge (Everingham et al., 2015) consists of segmenting
a few salient object classes from a widely varying background class. It is unlike the segmen-
tation for scene understanding benchmarks described earlier which require learning both
classes and their spatial context. A number of techniques have been proposed based on this
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a) 

b) 

Test samples 

SegNet  
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Fig. 2.6 Qualitative assessment of SegNet predictions on test samples from the Pascal VOC12
(Everingham et al., 2015) dataset. SegNet performs competitively (row (b) on several object
classes of varying shape and appearance. However, it lacks smoothness particularly on large
objects (see row(d)). This can be perhaps be attributed to the smaller empirical size of the
receptive field of the feature units in the deepest encoder layer size (Zhou et al., 2014a).

challenge which are increasingly more accurate and complex.4 Our efforts in this bench-
marking experiment have not been diverted towards attaining the top rank by either using
multi-stage training (Long et al., 2015), other datasets for pre-training such as MS-COCO
(Lin et al., 2014; Zheng et al., 2015), training and inference aids such as object proposals
(Noh et al., 2015; Zitnick and Dollár, 2014) or post-processing using CRF based methods
(Chen et al., 2016; Noh et al., 2015). Although these supporting techniques clearly have value
towards increasing the performance it unfortunately does not reveal the true performance
of the deep architecture which is the core segmentation engine. It however does indicate
that some of the large deep networks are difficult to train end-to-end on this task even with
pre-trained encoder weights. Therefore, to encourage more controlled benchmarking, we
trained SegNet end-to-end without other aids and report this performance.

In Table 2.5 we show the class average accuracy for some recent methods based on deep
architectures. To the best of our ability, we have tried to gather the performance measures of
the competing methods for their runs using minimum supporting techniques. We also specify
when a method reports the performance of its core engine on the smaller validation set of 346
images (Chen et al., 2016). We find the performance on the full test set to be approximately
1% less as compared to the smaller validation set.

4 See the leader board at http://host.robots.ox.ac.uk:8080/leaderboard
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Method Encoder size (M) Decoder size (M) Total size (M) Class avg. acc. Inference 500×500 pixels Inference 224×224 pixels
chen2016deeplab (Chen et al., 2016) (validation set) n/a n/a < 134.5 58 n/a n/a

FCN-8 (Long et al., 2015) (multi-stage training) 134 0.5 134.5 62.2 210ms n/a
Hypercolumns (Hariharan et al., 2015) (object proposals) n/a n/a > 134.5 62.6 n/a n/a

DeconvNet (Noh et al., 2015) (object proposals) 138.35 138.35 276.7 69.6 n/a 92ms (× 50)
CRF-RNN (Zheng et al., 2015) (multi-stage training) n/a n/a > 134.5 69.6 n/a n/a

SegNet 14.725 14.725 29.45 59.1 94ms 28ms

Table 2.5 Quantitative comparison on Pascal VOC12 dataset. The accuracies for the competing architectures are gathered for their
inference run using the least number of supporting training and inference techniques. However, since they are not trained end-to-end
like SegNet and use aids such as object proposals, we have added corresponding qualifying comments. The first three columns show
the number of trainable parameters in the encoder, decoder and full network. Many of the models are approximately the same size as
FCN. In comparison, SegNet is considerably smaller but achieves a competitive accuracy without resorting to supporting training or
inference aids. This results in SegNet being significantly faster than other models in terms of inference time.
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Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Dining table
74.5 30.6 61.4 50.8 49.8 76.2 64.3 69.7 23.8 60.8 54.7
Dog Horse Motor bike Person Potted plant Sheep Sofa Train TV Background
62.0 66.4 70.2 74.1 37.5 63.7 40.6 67.8 53.0 88.6

Table 2.6 Individual class accuracies of SegNet predictions on the Pascal VOC12 segmenta-
tion benchmark consisting of 21 object classes.

From the results in Table 2.5 we can see that the best performing networks are either very
large (and slow) (Noh et al., 2015) and/or they use a CRF (Zheng et al., 2015). The CRF
encourages large segments with a single label and this suits the Pascal challenge wherein
there are one or two salient objects in the centre of the image. This prior also has a larger
impact when training data is limited. This is shown in the experiments using CRF-RNN
(Zheng et al., 2015) wherein the core FCN-8 model predictions are less accurate without
extra training data.

It is interesting that the DeepLab (Chen et al., 2016) architecture which is simply upsam-
pling the FCN encoder features using bilinear interpolation performs reasonably well (on the
validation set). The fact that a coarse segmentation is enough to produce this performance
shows that this challenge is unlike scene understanding wherein many classes of varying
shape and size need to be segmented.

Methods using object proposals during training and/or inference (Hariharan et al., 2015;
Noh et al., 2015) are very slow in inference time and it is hard to measure their true per-
formance. These aids are necessitated by the very large size of their deep network (Noh
et al., 2015) and also because the Pascal data can also be processed by a detect and segment
approach. In comparison, SegNet is smaller by virtue of discarding the fully connected layers
in the VGG16 (Simonyan and Zisserman, 2014). The authors of DeepLab (Chen et al., 2016)
have also reported little loss in performance by reducing the size of the fully connected layers.
The smaller size of SegNet makes end-to-end training possible for benchmarking. Although
it may be argued that larger networks perform better, it is at the cost of a complex training
mechanism, increased memory and inference time. This makes them unsuitable for real-time
applications such as road scene understanding.

The individual class accuracies for SegNet predictions on Pascal VOC12 are shown in
Table 2.6. From this we once again see larger and more frequently occurring classes such
as aeroplane, bus, cat etc. have higher accuracy and smaller/thinner classes such as potted
plant, bicycle are poorly segmented. We believe more training data (Lin et al., 2014) can
help improve the performance of SegNet.

In the following section, we investigate techniques to improve our scene understanding
algorithm by modelling uncertainty with deep learning.
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2.4 Modelling Uncertainty

The algorithms presented so far in this chapter produce accurate semantic segmentation
predictions, however they are unaware of their uncertainty. Understanding what a model
does not know is a critical part of many machine learning systems (Ghahramani, 2015).

Quantifying uncertainty in computer vision applications can be largely divided into
regression settings such as depth regression, and classification settings such as semantic
segmentation. Existing approaches to model uncertainty in such settings in computer vision
include particle filtering and conditional random fields (Blake et al., 1993; He et al., 2004).
However, many modern applications mandate the use of deep learning to achieve state-
of-the-art performance (He et al., 2016). Unfortunately, most deep learning models are
not able to represent uncertainty. For example, deep learning typically does not allow for
uncertainty representation in regression settings. Deep learning classification models often
give normalised score vectors, which do not necessarily capture model uncertainty. For
both settings uncertainty can be captured with Bayesian deep learning (Denker and LeCun,
1991; MacKay, 1992; Neal, 1995) approaches – which offer a practical framework for
understanding uncertainty with deep learning models (Gal, 2016).

In Bayesian modelling, there are two main types of uncertainty one can model (Der Ki-
ureghian and Ditlevsen, 2009). Aleatoric uncertainty captures noise inherent in the obser-
vations. This could be, for example, sensor noise or motion noise, resulting in uncertainty
which cannot be reduced even if more data were to be collected. On the other hand, epistemic
uncertainty accounts for uncertainty in the model parameters – uncertainty which captures our
ignorance about which model generated our collected data. This uncertainty can be explained
away given enough data, and is often referred to as model uncertainty. Aleatoric uncertainty
can further be categorized into homoscedastic uncertainty, uncertainty which stays constant
for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others.
Heteroscedastic uncertainty is especially important for computer vision applications. For
example, for depth regression, highly textured input images with strong vanishing lines are
expected to result in confident predictions, whereas an input image of a featureless wall is
expected to have very high uncertainty.

In this section we make the observation that in many big data regimes (such as the ones
common to deep learning with image data), it is most effective to model aleatoric uncertainty,
uncertainty which cannot be explained away. This is in comparison to epistemic uncertainty
which is mostly explained away with the large amounts of data often available in machine
vision. We further show that modelling aleatoric uncertainty alone comes at a cost. Out-of-
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data examples, which can be identified with epistemic uncertainty, cannot be identified with
aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn
mappings from input data to aleatoric uncertainty and compose these together with epistemic
uncertainty approximations. We derive our framework for both regression and classification
applications and present results for per-pixel depth regression and semantic segmentation
tasks (see Figure 2.7 for examples). We show how modelling aleatoric uncertainty in
regression can be used to learn loss attenuation, and develop a complimentary approach for
the classification case. This demonstrates the efficacy of our approach on difficult and large
scale tasks.

The main contributions of this section are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in
particular with a novel approach for classification,

2. We improve model performance by 1− 3% over non-Bayesian baselines by reduc-
ing the effect of noisy data with the implied attenuation obtained from explicitly
representing aleatoric uncertainty,

3. We study the trade-offs between modelling aleatoric or epistemic uncertainty by
characterizing the properties of each uncertainty and comparing model performance
and inference time.

2.4.1 Bayesian Deep Learning

Existing approaches to Bayesian deep learning capture either epistemic uncertainty alone,
or aleatoric uncertainty alone (Gal, 2016). These uncertainties are formalised as probability
distributions over either the model parameters, or model outputs, respectively. Epistemic
uncertainty is modelled by placing a prior distribution over a model’s weights, and then
trying to capture how much these weights vary given some data. Aleatoric uncertainty on the
other hand is modelled by placing a distribution over the output of the model. For example,
in regression our outputs might be modelled as corrupted with Gaussian random noise. In
this case we are interested in learning the noise’s variance as a function of different inputs
(such noise can also be modelled with a constant value for all data points, but this is of
less practical interest). These uncertainties, in the context of Bayesian deep learning, are
explained in more detail in this section.
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(a) Input Image (b) Ground Truth (c) Semantic
Segmentation

(d) Aleatoric
Uncertainty

(e) Epistemic
Uncertainty

Fig. 2.7 Illustrating the difference between aleatoric and epistemic uncertainty for se-
mantic segmentation on the CamVid dataset (Brostow et al., 2009). We observe aleatoric
uncertainty captures object boundaries where labels are noisy. The bottom row shows a
failure case of the segmentation model, when the model fails to segment the footpath, and
the corresponding increased epistemic uncertainty.

2.4.2 Epistemic Uncertainty in Bayesian Deep Learning

To capture epistemic uncertainty in a neural network (NN) we put a prior distribution over its
weights, for example a Gaussian prior distribution: W∼N (0, I).

Such a model is referred to as a Bayesian neural network (BNN) (Denker and LeCun,
1991; MacKay, 1992; Neal, 1995). Bayesian neural networks replace the deterministic net-
work’s weight parameters with distributions over these parameters, and instead of optimising
the network weights directly we average over all possible weights (referred to as marginali-
sation). Denoting the random output of the BNN as fW(x), we define the model likelihood
p(y|fW(x)). Given a dataset X = {x1, ...,xN}, with labels Y = {y1, ...,yN}, Bayesian infer-
ence is used to compute the posterior over the weights p(W|X,Y). This posterior captures
the set of plausible model parameters, given the data.

For regression tasks we often define our likelihood as a Gaussian with mean given by
the model output: p(y|fW(x)) = N (fW(x),σ2), with an observation noise scalar σ . For
classification, on the other hand, we often squash the model output through a softmax
function, and sample from the resulting probability vector: p(y|fW(x)) = Softmax(fW(x)).

BNNs are easy to formulate, but difficult to perform inference in. This is because
the marginal probability p(Y|X), required to evaluate the posterior, cannot be evaluated
analytically. Different approximations exist (Blundell et al., 2015; Gal and Ghahramani, 2016;
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Graves, 2011; Hernández-Lobato et al., 2016). In these approximate inference techniques,
the posterior p(W|X,Y) is fitted with a simple distribution q∗

θ
(W), parametrised by θ .

This replaces the intractable problem of averaging over all weights in the BNN with an
optimisation task, where we seek to optimise over the parameters of the simple distribution
instead of optimising the original neural network’s parameters.

Dropout variational inference is a practical approach for approximate inference in large
and complex models (Gal and Ghahramani, 2016). This inference is done by training a
model with dropout before every weight layer, and by also performing dropout at test time to
sample from the approximate posterior (stochastic forward passes, referred to as Monte Carlo
dropout). More formally, this approach is equivalent to performing approximate variational
inference where we find a simple distribution q∗

θ
(W) in a tractable family which minimises

the Kullback-Leibler (KL) divergence to the true model posterior p(W|X,Y). Dropout can
be interpreted as a variational Bayesian approximation, where the approximating distribution
is a mixture of two Gaussians with small variances and the mean of one of the Gaussians is
fixed at zero.

Epistemic uncertainty in the weights can be reduced by observing more data. This
uncertainty induces prediction uncertainty by marginalising over the (approximate) weights
posterior distribution. For classification this can be approximated using Monte Carlo integra-
tion as follows:

p(y = c|x,X,Y)≈ 1
T

T

∑
t=1

Softmax(fŴt (x)) (2.2)

with T sampled masked model weights Ŵt ∼ q∗
θ
(W), where qθ (W) is the Dropout distribu-

tion (Gal, 2016). The uncertainty of this probability vector p can then be summarised using
the entropy of the probability vector: H(p) =−∑

C
c=1 pc log pc. For regression this epistemic

uncertainty is captured by the predictive variance, which can be approximated as:

Var(y)≈ σ
2 +

1
T

T

∑
t=1

fŴt (x)T fŴt (xt)−E(y)T E(y) (2.3)

with predictions in this epistemic model done by approximating the predictive mean: E(y)≈
1
T ∑

T
t=1 fŴt (x). The first term in the predictive variance, σ2, corresponds to the amount of

noise inherent in the data (heteroscedastic noise – which will be explained in more detail
soon). The second part of the predictive variance measures how much the model is uncertain
about its predictions – this term will vanish when we have zero parameter uncertainty (i.e.
when all draws Ŵt take the same constant value).
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2.4.3 Heteroscedastic Aleatoric Uncertainty

In the previous section we captured model uncertainty – uncertainty over the model param-
eters – by approximating the distribution p(W|X,Y). To capture aleatoric uncertainty in
regression, we would have to tune the observation noise parameter σ .

Homoscedastic regression assumes constant observation noise σ for every input point
x. Heteroscedastic regression, on the other hand, assumes that observation noise can vary
with input x (Le et al., 2005; Nix and Weigend, 1994). Heteroscedastic models are useful
in cases where parts of the observation space might have higher noise levels than others. In
non-Bayesian neural networks, this observation noise parameter is often fixed as part of the
model’s weight decay, and ignored. However, when made data-dependent, it can be learned
as a function of the data.

We derive loss functions for both Gaussian and Laplacian priors. The probability density
function for the Gaussian distribution is given by:

P(x) =
1

σ
√

2π
e−(x−µ)2

/
2σ2

. (2.4)

We wish our neural network to learn to estimate the distribution function. To construct the
optimisation objective we take the negative log likelihood of this distribution,

− log p(yi|xi) ∝
1

2σ2 ||yi−xi||2 +
1
2

logσ
2. (2.5)

Similarly for the Laplacian distribution,

− log p(yi|xi) ∝

√
2

σ
||yi−xi||+ logσ . (2.6)

We can see that using a Gaussian prior results in an L2 norm and a Laplacian prior results in
an L1 norm to form the residuals. This choice can be informed by the task, often in vision
models it is better to use a L1 norm as it is more robust to large, outlying residuals. However,
for now we consider the loss with a Gaussian distribution. We can formulate a loss to train
our deep learning models (with a Gaussian distribution) by:

LNN(θ) =
1
N

N

∑
i=1

1
2σ(xi)2 ||yi− f(xi)||2 +

1
2

logσ(xi)
2 (2.7)

with added weight decay parametrized by λ (and similarly for l1 loss). Note that here, unlike
the above, variational inference is not performed over the weights, but instead we perform
maximum a posteriori (MAP) inference – finding a single value for the model parameters θ .
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This approach does not capture epistemic model uncertainty, as epistemic uncertainty is a
property of the model and not of the data.

In the next section we will combine these two types of uncertainties together in a single
model. We will see how heteroscedastic noise can be interpreted as model attenuation, and
develop a complimentary approach for the classification case.

2.4.4 Combining Aleatoric and Epistemic Uncertainty in One Model

In the previous section we described existing Bayesian deep learning techniques. In this
section we present novel contributions which extend this existing literature. We develop
models that will allow us to study the effects of modelling either aleatoric uncertainty alone,
epistemic uncertainty alone, or modelling both uncertainties together in a single model. This
is followed by an observation that aleatoric uncertainty in regression tasks can be interpreted
as learned loss attenuation – making the loss more robust to noisy data. We follow that by
extending the ideas of heteroscedastic regression to classification tasks. This allows us to
learn loss attenuation for classification tasks as well.

We wish to capture both epistemic and aleatoric uncertainty in a vision model. For this
we turn the heteroscedastic neural network in Section 2.4.3 into a Bayesian neural network
by placing a distribution over its weights, with our construction in this section developed
specifically for the case of vision models5.

We need to infer the posterior distribution for a BNN model f mapping an input image, x,
to a unary output, ŷ ∈ R, and a measure of aleatoric uncertainty given by variance, σ2. We
approximate the posterior over the BNN with a dropout variational distribution using the
tools of Section 2.4.2. As before, we draw model weights from the approximate posterior
Ŵ∼ q(W) to obtain a model output, this time composed of both predictive mean as well as
predictive variance:

[ŷ, σ̂2] = fŴ(x) (2.8)

where f is a Bayesian convolutional neural network parametrised by model weights Ŵ. We
can use a single network to transform the input x, with its head split to predict both ŷ as well
as σ̂2.

We fix a Gaussian likelihood to model our aleatoric uncertainty. This induces a minimisa-
tion objective given labelled output points x:

LBNN(θ) =
1
D ∑

i

1
2

σ̂
−2
i ||yi− ŷi||2 +

1
2

log σ̂
2
i (2.9)

5Although this construction can be generalised for any heteroscedastic neural network architecture.
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where D is the number of output pixels yi corresponding to input image x, indexed by i
(additionally, the loss includes weight decay which is omitted for brevity). For example, we
may set D = 1 for image-level regression tasks, or D equal to the number of pixels for dense
prediction tasks (predicting a unary corresponding to each input image pixel). σ̂2

i is the BNN
output for the predicted variance for pixel i.

This loss consists of two components; the residual regression obtained with a stochastic
sample through the model – making use of the uncertainty over the parameters – and an
uncertainty regularization term. We do not need ‘uncertainty labels’ to learn uncertainty.
Rather, we only need to supervise the learning of the regression task. We learn the variance,
σ2, implicitly from the loss function. The second regularization term prevents the network
from predicting infinite uncertainty (and therefore zero loss) for all data points.

In practice, we train the network to predict the log variance, si := log σ̂2
i :

LBNN(θ) =
1
D ∑

i

1
2

exp(−si)||yi− ŷi||2 +
1
2

si. (2.10)

This is because it is more stable than regressing the variance, σ2, as the loss avoids a potential
division by zero. The exponential mapping also allows us to regress unconstrained scalar
values, where exp(−si) is resolved to the positive domain giving valid values for variance.

To summarize, the predictive uncertainty for pixel y in this combined model can be
approximated using:

Var(y)≈ 1
T

T

∑
t=1

ŷ2
t −
(

1
T

T

∑
t=1

ŷt

)2

+
1
T

T

∑
t=1

σ̂
2
t (2.11)

with {ŷt , σ̂
2
t }T

t=1 a set of T sampled outputs: ŷt , σ̂
2
t = fŴt (x) for randomly masked weights

Ŵt ∼ q(W).

2.4.5 Heteroscedastic Uncertainty as Learned Loss Attenuation

We observe that allowing the network to predict uncertainty, allows it effectively to temper
the residual loss by exp(−si), which depends on the data. This acts similarly to an intelligent
robust regression function. It allows the network to adapt the residual’s weighting, and
even allows the network to learn to attenuate the effect from erroneous labels. This makes
the model more robust to noisy data: inputs for which the model learned to predict high
uncertainty will have a smaller effect on the loss.

The model is discouraged from predicting high uncertainty for all points – in effect
ignoring the data – through the logσ2 term. Large uncertainty increases the contribution of
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this term, and in turn penalizes the model: The model can learn to ignore the data – but is
penalised for that. The model is also discouraged from predicting very low uncertainty for
points with high residual error, as low σ2 will exaggerate the contribution of the residual and
will penalize the model. It is important to stress that this learned attenuation is not an ad-hoc
construction, but a consequence of the probabilistic interpretation of the model.

This learned loss attenuation property of heteroscedastic neural networks in regression
is a desirable effect for classification models as well. However, heteroscedastic neural
networks in classification are peculiar models because technically any classification task has
input-dependent uncertainty. Nevertheless, the ideas above can be extended from regression
heteroscedastic networks to classification heteroscedastic networks, which we discuss in the
next section.

2.4.6 Heteroscedastic Uncertainty in Classification Tasks

We extend the results above to classification models, allowing us to get the equivalent of the
learned loss attenuation property in classification as well. For this we adapt the standard
classification model to marginalise over intermediate heteroscedastic regression uncertainty
placed over the logit space. We therefore explicitly refer to our proposed model adaptation
as a heteroscedastic classification neural network.

For classification tasks our model predicts a vector of unaries fi for each pixel i, which
when passed through a softmax operation, forms a probability vector pi. We change the
model by placing a Gaussian distribution over the unaries vector:

x̂i|W∼N (fW
i ,(σW

i )2)

p̂i = Softmax(x̂i).
(2.12)

Here fW
i ,σW

i are the network outputs with parameters W. This vector fW
i is corrupted with

Gaussian noise with variance (σW
i )2 (a diagonal matrix with one element for each logit

value), and the corrupted vector is then squashed with the softmax function to obtain pi, the
probability vector for pixel i.

Our expected log likelihood for this model is given by:

EN (x̂i;fW
i ,(σW

i )2)[log p̂i,c] (2.13)

with c the observed class for input i, which gives us our loss function. Ideally, we would
want to analytically integrate out this Gaussian distribution, but no analytic solution is known.
We therefore approximate the objective through Monte Carlo integration, and sample unaries
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through the softmax function. We note that this operation is extremely fast because we
perform the computation once (passing inputs through the model to get logits). We only
need to sample from the logits, which is a fraction of the network’s compute, and therefore
does not significantly increase the model’s test time. We can rewrite the above and obtain the
following numerically-stable stochastic loss:

x̂i,t = fW
i + εt , εt ∼N (0, (σW

i )2)

Lx =
1
T ∑

i,t
(−x̂i,t,c + log∑

c′
exp x̂i,t,c′)

(2.14)

with xi,t,c′ the c′ element in the logit vector xi,t .
This objective can be interpreted as learning loss attenuation, similarly to the regression

case. To understand this objective, we concentrate on a single pixel i and reformulate the
objective as ∑t log∑c′ exp(x̂t,c′− x̂t,c) with c the observed class and t Gaussian samples. We
shall analyse what this objective behaves like for various settings. When the model gives the
observed class a high logit value fc (compared to the logit values of other classes) and a low
noise value σc, this loss will be near zero – the ideal case. When the model attempts to give
the observed class a low logit value (for example if the label is noisy and fc′ is the highest
logit for some incorrect c′ ̸= c), there are two cases of interest. If the observed class logit has
a low noise value, then the loss will be penalised by approximately fc′− fc

6. However, if
the model increases the noise value for this last case, then some noise samples will take a
high value and the penalisation will be decreased from this last quantity. Lastly, the model is
discouraged from increasing the noise when the observed class is given a high logit value.
This is because large noise would lead some logit samples to take high negative values, and
these samples will increase the loss.

We next assess the above ideas empirically.

2.4.7 Experiments

In this section we evaluate our methods with pixel-wise depth regression and semantic
segmentation. An analysis of these results is given in the following section. To show the
robustness of our learned loss attenuation – a side-effect of modelling uncertainty – we present
results on an array of popular datasets, CamVid (Brostow et al., 2009), Make3D (Saxena
et al., 2009), and NYUv2 Depth (Silberman et al., 2012), where we advance state-of-the-art.

6To see this, pull the term fc′ − fc out of the log-sum-exp; the corresponding exponent will now be
exp(0) = 1, and since this was the largest exponent, the remaining exp terms in the sum will be near zero.
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For the following experiments we use the DenseNet architecture (Huang et al., 2016)
which has been adapted for dense prediction tasks by (Jégou et al., 2016). We use our own
independent implementation of the architecture using TensorFlow (Abadi et al., 2016) (which
slightly outperforms the original authors’ implementation on CamVid by 0.2%, see Table
2.7a). For all experiments we train with 224×224 crops of batch size 4, and then fine-tune
on full-size images with a batch size of 1. We train with RMS-Prop with a constant learning
rate of 0.001 and weight decay 10−4.

We model the benefit of combining both epistemic uncertainty as well as aleatoric
uncertainty using our developments presented in Section 2.4.4.

Semantic Segmentation

To demonstrate our method for semantic segmentation, we use two datasets, CamVid (Bros-
tow et al., 2009) and NYU v2 (Silberman et al., 2012). CamVid is a road scene understanding
dataset and has been introduced in Section 2.3.4. In Table 2.7a we present results for our
architecture. Our method sets a new state-of-the-art on this dataset with mean intersection
over union (IoU) score of 67.5%. We observe that modelling both aleatoric and epistemic
uncertainty improves over the baseline result. The implicit attenuation obtained from the
aleatoric loss provides a larger improvement than the epistemic uncertainty model. However,
the combination of both uncertainties improves performance even further. This shows that for
this application it is more important to model aleatoric uncertainty, suggesting that epistemic
uncertainty can be mostly explained away in this large data setting.

Secondly, NYUv2 (Silberman et al., 2012) is a challenging indoor segmentation dataset
with 40 different semantic classes (similar to SUN RGB-D). It has 1449 images with resolu-
tion 640×480 from 464 different indoor scenes. Table 2.7b shows our results. This dataset
is much harder than CamVid because there is significantly less structure in indoor scenes
compared to street scenes, and because of the increased number of semantic classes. We
use DeepLabLargeFOV (Chen et al., 2016) as our baseline model. We improve baseline
performance by giving the model flexibility to estimate uncertainty and attenuate the loss.
The effect is more pronounced, perhaps because the dataset is more difficult. Additional
qualitative results are given in Figure 2.8, Figure 2.9 and Figure 2.10.

Pixel-wise Depth Regression

We demonstrate the efficacy of our method for regression using two popular monocular
depth regression datasets, Make3D (Saxena et al., 2009) and NYUv2 Depth (Silberman
et al., 2012). The Make3D dataset consists of 400 training and 134 testing images, gathered
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CamVid IoU

SegNet (Badrinarayanan et al., 2017) 46.4
FCN-8 (Long et al., 2015) 57.0
chen2016deeplab-LFOV (Chen et al., 2016) 61.6
Bayesian SegNet (Kendall et al., 2017a) 63.1
Dilation8 (Yu and Koltun, 2016) 65.3
Dilation8 + FSO (Kundu et al., 2016) 66.1
DenseNet (Jégou et al., 2016) 66.9

This work:

DenseNet (Our Implementation) 67.1
+ Aleatoric Uncertainty 67.4
+ Epistemic Uncertainty 67.2
+ Aleatoric & Epistemic 67.5

(a) CamVid dataset for road scene segmentation.

NYUv2 40-class Accuracy IoU

Gupta et al. (2014) 60.3 28.6

SegNet (Badri-
narayanan et al.,
2017)

66.1 23.6

FCN-8 (Long et al.,
2015)

61.8 31.6

Bayesian SegNet
(Kendall et al., 2017a)

68.0 32.4

Eigen and Fergus
(2015)

65.6 34.1

This work:

chen2016deeplabLargeFOV 70.1 36.5
+ Aleatoric Uncertainty 70.4 37.1
+ Epistemic Uncertainty 70.2 36.7
+ Aleatoric & Epistemic 70.6 37.3

(b) NYUv2 40-class dataset for indoor scenes.

Table 2.7 Semantic segmentation performance. Modelling both aleatoric and epistemic
uncertainty gives a notable improvement in segmentation accuracy over state of the art
baselines.

using a 3-D laser scanner. We evaluate our method using the same standard as (Laina et al.,
2016), resizing images to 345× 460 pixels and evaluating on pixels with depth less than
70m. NYUv2 Depth is taken from the same dataset used for classification above. It contains
RGB-D imagery from 464 different indoor scenes. We compare to previous approaches
for Make3D in Table 2.8a and NYUv2 Depth in Table 2.8b, using standard metrics (for a
description of these metrics please see (Eigen et al., 2014)).

These results show that aleatoric uncertainty is able to capture many aspects of this task
which are inherently difficult. For example, in the qualitative results in Figure 2.11 and
2.12 we observe that aleatoric uncertainty is greater for large depths, reflective surfaces
and occlusion boundaries in the image. These are common failure modes of monocular
depth algorithms (Laina et al., 2016). On the other hand, these qualitative results show that
epistemic uncertainty captures difficulties due to lack of data. For example, we observe larger
uncertainty for objects which are rare in the training set such as humans in the third example
of Figure 2.11.

In summary, we have demonstrated that our model can improve performance over
non-Bayesian baselines by implicitly learning attenuation of systematic noise and difficult
concepts. For example we observe high aleatoric uncertainty for distant objects and on object
and occlusion boundaries.
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Make3D rel rms log10

Karsch et al. (2012) 0.355 9.20 0.127
Liu et al. (2014) 0.335 9.49 0.137
(Liu et al., 2015a) 0.314 8.60 0.119
Li et al. (2015) 0.278 7.19 0.092
Laina et al. (2016) 0.176 4.46 0.072

This work:

DenseNet Baseline 0.167 3.92 0.064
+ Aleatoric Uncertainty 0.149 3.93 0.061
+ Epistemic Uncertainty 0.162 3.87 0.064
+ Aleatoric & Epistemic 0.149 4.08 0.063

(a) Make3D depth dataset (Saxena et al., 2009).

NYU v2 Depth rel rms log10 δ1 δ2 δ3

Karsch et al. (2012) 0.374 1.12 0.134 - - -
Ladicky et al. (2014) - - - 54.2% 82.9% 91.4%
Liu et al. (2014) 0.335 1.06 0.127 - - -
Li et al. (2015) 0.232 0.821 0.094 62.1% 88.6% 96.8%
Liu et al. (2015a) 0.230 0.824 0.095 61.4% 88.3% 97.1%
Eigen et al. (2014) 0.215 0.907 - 61.1% 88.7% 97.1%
Eigen and Fergus (2015) 0.158 0.641 - 76.9% 95.0% 98.8%
Laina et al. (2016) 0.127 0.573 0.055 81.1% 95.3% 98.8%

This work:

DenseNet Baseline 0.117 0.517 0.051 80.2% 95.1% 98.8%
+ Aleatoric Uncertainty 0.112 0.508 0.046 81.6% 95.8% 98.8%
+ Epistemic Uncertainty 0.114 0.512 0.049 81.1% 95.4% 98.8%
+ Aleatoric & Epistemic 0.110 0.506 0.045 81.7% 95.9% 98.9%

(b) NYUv2 depth dataset (Silberman et al., 2012).

Table 2.8 Monocular depth regression performance. Comparison to previous approaches
on depth regression dataset NYUv2 Depth. Modelling the combination of uncertainties
improves accuracy.
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2.4.8 What Do Aleatoric and Epistemic Uncertainties Capture?

In Section 2.4.7 we showed that modelling aleatoric and epistemic uncertainties improves
prediction performance, with the combination performing even better. In this section we
wish to study the effectiveness of modelling aleatoric and epistemic uncertainty. In particular,
we wish to quantify the performance of these uncertainty measurements and analyse what
they capture.

Qualitative observations

Figure 2.8 shows segmentations and model uncertainty results from Bayesian SegNet (SegNet
evaluated with Monte Carlo dropout (Kendall et al., 2017a)) on CamVid Road Scenes
(Brostow et al., 2009). Figure 2.9 shows SUN RGB-D Indoor Scene Understanding (Song
et al., 2015) results and Figure 2.10 has Pascal VOC (Everingham et al., 2015) results. These
figures show the qualitative performance of Bayesian SegNet. We observe that segmentation
predictions are smooth, with a sharp segmentation around object boundaries. Also, when
the model predicts an incorrect label, the model uncertainty is generally very high. More
generally, we observe that a high model uncertainty is predominantly caused by three
situations.

Firstly, at class boundaries the model often displays a high level of uncertainty. This
reflects the ambiguity surrounding the definition of defining where these labels transition.
The Pascal results clearly illustrate this in Figure 2.10.

Secondly, objects which are visually difficult to identify often appear uncertain to the
model. This is often the case when objects are occluded or at a distance from the camera.

The third situation causing model uncertainty is when the object appears visually am-
biguous to the model. As an example, cyclists in the CamVid results (Figure 2.8) are visually
similar to pedestrians, and the model often displays uncertainty around them. We observe
similar results with visually similar classes in SUN (Figure 2.9) such as chair and sofa, or
bench and table. In Pascal this is often observed between cat and dog, or train and bus
classes.

Quality of Uncertainty Metric

To understand what causes the model to be uncertain, we have plotted the relationship
between uncertainty and accuracy in Figure 2.13a and between uncertainty and the frequency
of each class in the dataset in Figure 2.13b. Uncertainty is calculated as the mean uncertainty
value for each pixel of that class in a test dataset. We observe an inverse relationship
between uncertainty and class accuracy or class frequency. This shows that the model is
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Fig. 2.8 Bayesian SegNet results on CamVid dataset. From top: input image, ground truth, Bayesian
SegNet’s segmentation prediction, and overall model uncertainty averaged across all classes.

Fig. 2.9 Bayesian SegNet results on the SUN RGB-D dataset. From top: input image, ground truth,
Bayesian SegNet’s segmentation prediction, and overall model uncertainty averaged across all classes.

Fig. 2.10 Pascal VOC 2012 dataset. From top: input image, Bayesian SegNet’s segmentation prediction,
and overall model uncertainty averaged across all classes. Ground truth segmentation not available for Pascal
test images. 46
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Fig. 2.11 NYUv2 Depth results. From left: input image, ground truth, depth regression,
aleatoric uncertainty, and epistemic uncertainty.

Fig. 2.12 Qualitative results on the Make3D depth regression dataset. Left to right: input
image, ground truth, depth prediction, aleatoric uncertainty, epistemic uncertainty.
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(a) Performance vs. mean
model uncertainty

(b) Class frequency vs. mean
model uncertainty

Fig. 2.13 Bayesian SegNet performance and frequency compared to mean model un-
certainty for each class in CamVid road scene understanding dataset. These figures show a
strong inverse relationships. We observe in (a) that the model is more confident with accurate
classes. (b) shows classes that Bayesian SegNet is confident at are more prevalent in the
dataset. Conversely, for the rare classes such as Sign Symbol and Bicyclist, Bayesian SegNet
has a much higher model uncertainty.

more confident about classes which are easier or occur more often, and less certain about
rare and challenging classes.

In Section 2.4.7 we showed that modelling aleatoric and epistemic uncertainty improves
prediction performance, with the combination performing even better. In this section we
show similar trade-offs for the performance of the uncertainty estimate. We compare aleatoric
and epistemic uncertainty quantitatively and again show that aleatoric is more effective in
big-data settings, however the combination performs best.

Firstly, in Figure 2.14 we show precision-recall curves for regression and classification
models. They show how our model performance improves by removing pixels with uncer-
tainty larger than various percentile thresholds. This illustrates two behaviours of aleatoric
and epistemic uncertainty measures. Firstly, it shows that the uncertainty measurements are
able to correlate well with accuracy, because all curves are strictly decreasing functions. We
observe that precision is lower when we have more points that the model is not certain about.
Secondly, the curves for epistemic and aleatoric uncertainty models are very similar. This
shows that each uncertainty ranks pixel confidence similarly to the other uncertainty, in the
absence of the other uncertainty. This suggests that when only one uncertainty is explicitly
modelled, it attempts to compensate for the lack of the alternative uncertainty when possible.

Secondly, in Figure 2.15 we analyse the quality of our uncertainty measurement using
calibration plots from our model on the test set. To form calibration plots for classification
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Fig. 2.14 Precision Recall plots demonstrating both measures of uncertainty can effectively
capture accuracy for examples similar to the training dataset, as precision decreases with
increasing uncertainty.
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Fig. 2.15 Uncertainty calibration plots. This plot shows how well uncertainty is calibrated,
where perfect calibration corresponds to the line y = x, shown in black. We observe an
improvement in calibration mean squared error with aleatoric, epistemic and the combination
of uncertainties.

models, we discretize our model’s predicted probabilities into a number of bins, for all classes
and all pixels in the test set. We then plot the frequency of correctly predicted labels for each
bin of probability values. Better performing uncertainty estimates should correlate more
accurately with the line y = x in the calibration plots. For regression models, we can form
calibration plots by comparing the frequency of residuals lying within varying thresholds
of the predicted distribution. Figure 2.15 shows the calibration of our classification and
regression uncertainties.

Uncertainty with Distance from Training Data

In this section we show two results:

1. Aleatoric uncertainty cannot be explained away with more data,
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Train Test Aleatoric Epistemic
dataset dataset RMS variance variance

Make3D / 4 Make3D 5.76 0.506 7.73
Make3D / 2 Make3D 4.62 0.521 4.38
Make3D Make3D 3.87 0.485 2.78

Make3D / 4 NYUv2 - 0.388 15.0
Make3D NYUv2 - 0.461 4.87

(a) Regression

Train Test Aleatoric Epistemic logit
dataset dataset IoU entropy variance (×10−3)

CamVid / 4 CamVid 57.2 0.106 1.96
CamVid / 2 CamVid 62.9 0.156 1.66
CamVid CamVid 67.5 0.111 1.36

CamVid / 4 NYUv2 - 0.247 10.9
CamVid NYUv2 - 0.264 11.8

(b) Classification

Table 2.9 Accuracy of aleatoric and epistemic uncertainties for a range of different train
and test dataset combinations. We show aleatoric and epistemic uncertainty as the mean
value of all pixels in the test dataset. We compare reduced training set sizes (1, 1⁄2, 1⁄4) and
unrelated test datasets. This shows that aleatoric uncertainty remains approximately constant,
while epistemic uncertainty decreases the closer the test data is to the training distribution,
demonstrating that epistemic uncertainty can be explained away with sufficient training data
(but not for out-of-distribution data).

2. Aleatoric uncertainty does not increase for out-of-data examples (situations different
from training set), whereas epistemic uncertainty is required to capture uncertainty
from situations different from training set.

In Table 2.9 we give accuracy and uncertainty for models trained on increasing sized
subsets of datasets. This shows that epistemic uncertainty decreases as the training dataset
gets larger. It also shows that aleatoric uncertainty remains relatively constant and cannot
be explained away with more data. Testing the models with a different test set (bottom two
lines) shows that epistemic uncertainty increases considerably on those test points which lie
far from the training sets.

These results reinforce the case that epistemic uncertainty can be explained away with
enough data, but is required to capture situations not encountered in the training set. This is
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particularly important for safety-critical systems, where epistemic uncertainty is required to
detect situations which have never been seen by the model before.

Real-Time Application

Our model based on DenseNet (Jégou et al., 2016) can process a 640×480 resolution image
in 150ms on a NVIDIA Titan X GPU. The aleatoric uncertainty models add negligible
compute. However, epistemic models require expensive Monte Carlo dropout sampling. For
models such as ResNet (He et al., 2004), this is possible to achieve economically because
only the last few layers contain dropout. Other models, like DenseNet, require the entire
architecture to be sampled. This is difficult to parallelise due to GPU memory constraints,
and often results in a 50× slow-down for 50 Monte Carlo samples.

2.5 Jointly Learning Geometry and Semantics

Scene understanding requires knowledge of both geometry and semantics. In this section, we
wish to jointly learn both geometry and semantics with a single representation. This is a form
of multi-task learning, which aims to improve learning efficiency and prediction accuracy
by learning multiple objectives from a shared representation (Caruana, 1998). Multi-task
learning is prevalent in many applications of machine learning – from computer vision
(Kokkinos, 2016) to natural language processing (Collobert and Weston, 2008) to speech
recognition (Huang et al., 2013).

We explore multi-task learning within the setting of visual scene understanding in com-
puter vision. Scene understanding algorithms must understand both the geometry and se-
mantics of the scene at the same time. This forms an interesting multi-task learning problem
because scene understanding involves joint learning of various regression and classification
tasks with different units and scales. Multi-task learning of visual scene understanding is
of crucial importance in systems where long computation run-time is prohibitive, such as
the ones used in robotics. Combining all tasks into a single model reduces computation and
allows these systems to run in real-time.

Prior approaches to simultaneously learning multiple tasks use a naïve weighted sum
of losses, where the loss weights are uniform, or manually tuned (Eigen and Fergus, 2015;
Kokkinos, 2016; Sermanet et al., 2013). However, we show that performance is highly
dependent on an appropriate choice of weighting between each task’s loss. Searching for an
optimal weighting is prohibitively expensive and difficult to resolve with manual tuning. We
observe that the optimal weighting of each task is dependent on the measurement scale (e.g.
meters, centimeters or millimeters) and ultimately the magnitude of the task’s noise. In this
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Fig. 2.16 Multi-task deep learning. We derive a principled way of combining multiple
regression and classification loss functions for multi-task learning. Our architecture takes a
single monocular RGB image as input and produces a pixel-wise classification, an instance
semantic segmentation and an estimate of per pixel depth. Multi-task learning can improve
accuracy over separately trained models because cues from one task, such as depth, are used
to regularize and improve the generalization of another domain, such as segmentation.

work we propose a principled way of combining multiple loss functions to simultaneously
learn multiple objectives using homoscedastic uncertainty. We interpret homoscedastic
uncertainty as task-dependent weighting and show how to derive a principled multi-task loss
function which can learn to balance various regression and classification losses. Our method
can learn to balance these weightings optimally, resulting in superior performance, compared
with learning each task individually.

Specifically, we demonstrate our method in learning scene geometry and semantics with
three tasks. Firstly, we learn semantic segmentation. Secondly, our model performs instance
segmentation, which is the harder task of segmenting separate masks for each individual
object in an image (for example, a separate, precise mask for each individual car on the road)
(Bai and Urtasun, 2017; Dai et al., 2016; De Brabandere et al., 2017; Hariharan et al., 2015;
Pinheiro et al., 2015). This is a more complicated task than semantic segmentation, as it
requires not only an estimate of each pixel’s class, but also which object that pixel belongs to.
It is also more complicated than object detection, which often predicts object bounding boxes
alone (Girshick et al., 2014). Finally, our model predicts pixel-wise metric depth. Depth by
recognition has been demonstrated using dense prediction networks with supervised (Eigen
and Fergus, 2015) and unsupervised (Garg et al., 2016) deep learning. However it is very
hard to estimate depth in a way which generalises well. We show that we can improve our
estimation of geometry and depth by using semantic labels and multi-task deep learning.
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In existing literature, separate deep learning models would be used to learn depth re-
gression, semantic segmentation and instance segmentation to create a complete scene
understanding system. Given a single monocular input image, our system is the first to
produce a semantic segmentation, a dense estimate of metric depth and an instance level
segmentation jointly (Figure 2.16). While other vision models have demonstrated multi-task
learning, we show how to learn to combine semantics and geometry. Combining these tasks
into a single model ensures that the model agrees between the separate task outputs while
reducing computation. Finally, we show that using a shared representation with multi-task
learning improves performance on various metrics, making the models more effective.

In summary, the key contributions of this Section are:

1. a novel and principled multi-task loss to simultaneously learn various classification and
regression losses of varying quantities and units using homoscedastic task uncertainty,

2. a unified architecture for semantic segmentation, instance segmentation and depth
regression,

3. demonstrating the importance of loss weighting in multi-task deep learning and how to
obtain superior performance compared to equivalent separately trained models.

2.5.1 Multi-task Learning

We first review related work from the field of multi-task learning. Multi-task learning aims
to improve learning efficiency and prediction accuracy for each task, when compared to
training a separate model for each task (Baxter et al., 2000; Thrun and Bücken, 1996). It can
be considered an approach to inductive knowledge transfer which improves generalisation by
sharing the domain information between complimentary tasks. It does this by using a shared
representation to learn multiple tasks – what is learned from one task can help learn other
tasks (Caruana, 1998).

Fine-tuning (Agrawal et al., 2015; Oquab et al., 2014) is a basic example of multi-task
learning, where we can leverage different learning tasks by considering them as a pre-training
step. Other models alternate learning between each training task, for example in natural
language processing (Collobert and Weston, 2008). Multi-task learning can also be used
in a data streaming setting (Thrun and Bücken, 1996), or to prevent forgetting previously
learned tasks in reinforcement learning (Kirkpatrick et al., 2017). It can also be used to learn
unsupervised features from various data sources with an auto-encoder (Ngiam et al., 2011).

In computer vision there are many examples of methods for multi-task learning. Many
focus on semantic tasks, such as classification and semantic segmentation (Liao et al., 2016)
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or classification and detection (Roddick et al., 2018; Sermanet et al., 2013). MultiNet
(Teichmann et al., 2016) proposes an architecture for detection, classification and seman-
tic segmentation. CrossStitch networks (Misra et al., 2016) explore methods to combine
multi-task neural activations. Uhrig et al. (Uhrig et al., 2016) learn semantic and instance
segmentations under a classification setting. SpineNet (Jamaludin et al., 2016) predicts
multiple radiological scores in MRI images for medical imaging. Multi-task deep learning
has also been used for geometry and regression tasks. (Eigen and Fergus, 2015) show how to
learn semantic segmentation, depth and surface normals. PoseNet (Chapter 3) is a model
which learns camera position and orientation. UberNet (Kokkinos, 2016) learns a number
of different regression and classification tasks under a single architecture. In this work we
are the first to propose a method for jointly learning depth regression, semantic and instance
segmentation. Like the model of Eigen and Fergus (2015), our model learns both semantic
and geometry representations, which is important for scene understanding. However, our
model learns the much harder task of instance segmentation which requires knowledge of
both semantics and geometry. This is because our model must determine the class and spatial
relationship for each pixel in each object for instance segmentation.

More importantly, all previous methods which learn multiple tasks simultaneously use a
naïve weighted sum of losses, where the loss weights are uniform, or crudely and manually
tuned. An example is UberNet (Kokkinos, 2016), which is unable to obtain the performance
of separately trained models for each task. In this work we give an explaination and solution
for this problem. We propose a principled way of combining multiple loss functions to
simultaneously learn multiple objectives using homoscedastic task uncertainty. We illustrate
the importance of appropriately weighting each task in deep learning to achieve good
performance and show that our method can learn to balance these weightings optimally.

2.5.2 Multi Task Learning with Homoscedastic Uncertainty

Multi-task learning concerns the problem of optimising a model with respect to multiple
objectives. It is prevalent in many deep learning problems. The naive approach to combining
multi-objective losses would be to simply perform a weighted linear sum of the losses for
each individual task:

Ltotal = ∑
i

wiLi. (2.15)

This is the dominant approach used by prior work (Liao et al., 2016; Sermanet et al.,
2013; Teichmann et al., 2016; Uhrig et al., 2016), for example for dense prediction tasks
(Kokkinos, 2016), for scene understanding tasks (Eigen and Fergus, 2015) and for rotation
(in quaternions) and translation (in meters) for camera pose (Chapter 3). However, there are
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(a) Comparing loss weightings when learning semantic classification and depth regression

00.10.20.30.40.50.60.70.80.91

3.8

4

4.2

4.4

4.6

4.8

5

Instance Weight

R
M

S
In

st
an

ce
(p

x)

Instance Regression

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.62

0.64

0.66

0.68

0.7

Depth Weight

R
M

S
In

ve
rs

e
D

ep
th

E
rr

or
(m
−

1 )

Instance Regression
Depth Regression

Task Weights Instance Depth
Instance Depth Err. [px] Err. [px]

1.0 0.0 4.61
0.75 0.25 4.52 0.692
0.5 0.5 4.30 0.655
0.4 0.6 4.14 0.641
0.3 0.7 4.04 0.615
0.2 0.8 3.83 0.607
0.1 0.9 3.91 0.600
0.05 0.95 4.27 0.607

0.025 0.975 4.31 0.624
0.0 1.0 0.640

Learned weights
3.54 0.539with task uncertainty

(this work, Section 2.5.4)

(b) Comparing loss weightings when learning instance regression and depth regression

Fig. 2.17 Learning multiple tasks improves the model’s representation and individual task performance. These figures and
tables illustrate the advantages of multi-task learning for (a) semantic classification and depth regression and (b) instance and depth
regression. Performance of the model in individual tasks is seen at both edges of the plot where w = 0 and w = 1. For some balance of
weightings between each task, we observe improved performance for both tasks. All models were trained with a learning rate of 0.01
with the respective weightings applied to the losses using the loss function in (2.15). Results are shown using the Tiny CityScapes
validation dataset using a down-sampled resolution of 128×256.
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a number of issues with this method. Namely, model performance is extremely sensitive
to weight selection, wi, as illustrated in Figure 2.17. These weight hyper-parameters are
expensive to tune, often taking many days for each trial. Therefore, it is desirable to find a
more convenient approach which is able to learn the optimal weights.

More concretely, let us consider a network which learns to predict pixel-wise depth and
semantic class from an input image. In Figure 2.17 the two boundaries of each plot show
models trained on individual tasks, with the curves showing performance for varying weights
wi for each task. We observe that at some optimal weighting, the joint network performs
better than separate networks trained on each task individually (performance of the model on
individual tasks is seen at both edges of the plot: w = 0 and w = 1). At near-by values to the
optimal weight the network performs worse on one of the tasks. However, searching for these
optimal weightings is expensive and increasingly difficult with large models with numerous
tasks. Figure 2.17 also shows a similar result for two regression tasks; instance segmentation
and depth regression. We next show how to learn optimal task weightings using ideas from
probabilistic modelling.

2.5.3 Homoscedastic uncertainty as task-dependent uncertainty

In Bayesian modelling, there are two main types of uncertainty one can model (Der Ki-
ureghian and Ditlevsen, 2009).

• Epistemic uncertainty is uncertainty in the model, which captures what our model does
not know due to lack of training data. It can be explained away with increased training
data.

• Aleatoric uncertainty captures our uncertainty with respect to information which our
data cannot explain. Aleatoric uncertainty can be explained away with the ability to
observe all explanatory variables with increasing precision.

Aleatoric uncertainty can again be divided into two sub-categories.

• Data-dependent or Heteroscedastic uncertainty is aleatoric uncertainty which depends
on the input data and is predicted as a model output.

• Task-dependent or Homoscedastic uncertainty is aleatoric uncertainty which is not
dependent on the input data. It is not a model output, rather it is a quantity which
stays constant for all input data and varies between different tasks. It can therefore be
described as task-dependent uncertainty.
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In a multi-task setting, we show that the task uncertainty captures the relative confidence
between tasks, reflecting the uncertainty inherent to the regression or classification task. It
will also depend on the task’s representation or unit of measure. We propose that we can use
homoscedastic uncertainty as a basis for weighting losses in a multi-task learning problem.

2.5.4 Multi-task likelihoods

In this section we derive a multi-task loss function based on maximising the Gaussian
likelihood with homoscedastic uncertainty. This extends the derivation in Section 2.4.3 to
multi-task likelihoods. Let fW(x) be the output of a neural network with weights W on input
x. We define the following probabilistic model. For regression tasks we define our likelihood
as a Gaussian with mean given by the model output:

p(y|fW(x)) = N (fW(x),σ2) (2.16)

with an observation noise scalar σ . For classification we often squash the model output
through a softmax function, and sample from the resulting probability vector:

p(y|fW(x)) = Softmax(fW(x)). (2.17)

In the case of multiple model outputs, we often define the likelihood to factorise over
the outputs, given some sufficient statistics. We define fW(x) as our sufficient statistics, and
obtain the following multi-task likelihood:

p(y1, ...,yK|fW(x)) = p(y1|fW(x))...p(yK|fW(x)) (2.18)

with model outputs y1, ...,yK (such as semantic segmentation, depth regression, etc).
In maximum likelihood inference, we maximise the log likelihood of the model. In

regression, for example, the log likelihood can be written as

log p(y|fW(x)) ∝− 1
2σ2 ||y− fW(x)||2− logσ (2.19)

for a Gaussian likelihood (or similarly for a Laplace likelihood) with σ the model’s observa-
tion noise parameter – capturing how much noise we have in the outputs. We then maximise
the log likelihood with respect to the model parameters W and observation noise parameter
σ .
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Let us now assume that our model output is composed of two vectors y1 and y2, each
following a Gaussian distribution:

p(y1,y2|fW(x)) = p(y1|fW(x)) · p(y2|fW(x))

= N (y1; fW(x),σ2
1 ) ·N (y2; fW(x),σ2

2 ).
(2.20)

This leads to the minimisation objective, L (W,σ1,σ2), (our loss) for our multi-output
model:

=− log p(y1,y2|fW(x))

∝
1

2σ2
1
||y1− fW(x)||2 + 1

2σ2
2
||y2− fW(x)||2 + logσ1σ2

=
1

2σ2
1
L1(W)+

1
2σ2

2
L2(W)+ logσ1σ2

(2.21)

Where we write L1(W)= ||y1−fW(x)||2 for the loss of the first output variable, and similarly
for L2(W).

We interpret minimising this last objective with respect to σ1 and σ2 as learning the
relative weight of the losses L1(W) and L2(W) adaptively, based on the data. As σ1 – the
noise parameter for the variable y1 – increases, we have that the weight of L1(W) decreases.
On the other hand, as the noise decreases, we have that the weight of the respective objective
increases. The noise is discouraged from increasing too much (effectively ignoring the data)
by the last term in the objective, which acts as a regulariser for the noise terms.

This construction can be trivially extended to multiple regression outputs. However,
the extension to classification likelihoods is more interesting. We adapt the classification
likelihood to squash a scaled version of the model output through a softmax function:

p(y|fW(x),σ) = Softmax
(

1
σ2 fW(x)

)
(2.22)

with a positive scalar σ . This can be interpreted as a Boltzmann distribution (also called
Gibbs distribution) where the input is scaled by σ2 (often referred to as temperature). This
scalar is either fixed or can be learnt, where the parameter’s magnitude determines how
‘uniform’ (flat) the discrete distribution is. This relates to its uncertainty, as measured in
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entropy. The log likelihood for this output can then be written as

log p(y = c|fW(x),σ) =
1

σ2 f W
c (x)

− log∑
c′

exp
(

1
σ2 f W

c′ (x)
) (2.23)

with f W
c (x) the c’th element of the vector fW(x).

Next, assume that a model’s multiple outputs are composed of a continuous output y1

and a discrete output y2, modelled with a Gaussian likelihood and a softmax likelihood,
respectively. Like before, the joint loss, L (W,σ1,σ2), is given as:

=− log p(y1,y2 = c|fW(x))

=− logN (y1; fW(x),σ2
1 ) ·Softmax(y2 = c; fW(x),σ2)

=
1

2σ2
1
||y1− fW(x)||2 + logσ1− log p(y2 = c|fW(x),σ2)

=
1

2σ2
1
L1(W)+

1
σ2

2
L2(W)+ logσ1

+ log
∑c′ exp

(
1

σ2
2

f W
c′ (x)

)
(

∑c′ exp
(

f W
c′ (x)

)) 1
σ2

2

≈ 1
2σ2

1
L1(W)+

1
σ2

2
L2(W)+ logσ1 + logσ2,

(2.24)

where again we write L1(W) = ||y1− fW(x)||2 for the Euclidean loss of y1, write L2(W) =

− logSoftmax(y2, fW(x)) for the cross entropy loss of y2 (with fW(x) not scaled), and
optimise with respect to W as well as σ1, σ2. In the last transition we introduced the

explicit simplifying assumption 1
σ2

∑c′ exp
(

1
σ2

2
f W
c′ (x)

)
≈
(

∑c′ exp
(

f W
c′ (x)

)) 1
σ2

2 which

becomes an equality when σ2→ 1. This has the advantage of simplifying the optimisation
objective, as well as empirically improving results.

This last objective can be seen as learning the relative weights of the losses for each
output. Large scale values σ2 will decrease the contribution of L2(W), whereas small scale
σ2 will increase its contribution. The scale is regulated by the last term in the equation. The
objective is penalised when setting σ2 too large.

This construction can be trivially extended to arbitrary combinations of discrete and
continuous loss functions, allowing us to learn the relative weights of each loss in a principled
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and well-founded way. This loss is smoothly differentiable, and is well formed such that
the task weights will not converge to zero. In contrast, directly learning the weights using a
simple linear sum of losses (2.15) would result in weights which quickly converge to zero.
In the following sections we introduce our experimental model and present empirical results.

In practice, we train the network to predict the log variance, s := logσ2. This is because
it is more stable than regressing the variance, σ2, as the loss avoids any division by zero. The
exponential mapping also allows us to regress unconstrained scalar values, where exp(−s) is
resolved to the positive domain giving valid values for variance.

2.5.5 Scene Understanding Tasks

To understand semantics and geometry we first propose an architecture which can learn
regression and classification outputs, at a pixel level. Our architecture is a deep convolutional
encoder decoder network (Badrinarayanan et al., 2017). Our model consists of a number
of convolutional encoders which produce a shared representation, followed by a number of
task-specific convolutional decoders. A high level summary is shown in Figure 2.16. The
purpose of the encoder is to learn a deep mapping to produce rich, contextual features, using
domain knowledge from a number of related tasks. The purpose of the decoder is to learn a
mapping from the shared features to an output. This section describes how we learn each of
the scene understanding tasks.

Semantic Segmentation. We use the cross-entropy loss to learn pixel-wise class proba-
bilities, averaging the loss over the pixels with semantic labels in each mini-batch.

Instance Segmentation. An intuitive method for defining which instance a pixel belongs
to is an association to the instance’s centroid. We use a regression approach for instance
segmentation (Liang et al., 2015). This approach is inspired by (Leibe et al., 2008) which
identifies instances using Hough votes from object parts. In this work we extend this idea by
using votes from individual pixels using deep learning. We learn an instance vector, x̂n, for
each pixel coordinate, cn, which points to the centroid of the pixel’s instance, in, such that
in = x̂n + cn. We train this regression with an L1 loss using ground truth labels xn, averaged
over all labelled pixels, NI , in a mini-batch: LInstance =

1
|NI |∑NI ∥xn− x̂n∥1.

Figure 2.18 details the representation we use for instance segmentation. Figure 2.18(a)
shows the input image and a mask of the pixels which are of an instance class (at test
time inferred from the predicted semantic segmentation). Figure 2.18(b) and Figure 2.18(c)
show the ground truth and predicted instance vectors for both x and y coordinates. We then
cluster these votes using OPTICS (Ankerst et al., 1999), resulting in the predicted instance
segmentation output in Figure 2.18(d).
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(a) Input Image (b) Semantic Segmentation

(c) Instance vector regression (d) Instance Segmentation

Fig. 2.18 Instance centroid regression method. For each pixel, we regress a vector pointing
to the instance’s centroid. The loss is only computed over pixels which are from instances.
We visualise (c) by representing colour as the orientation of the instance vector, and intensity
as the magnitude of the vector.

One of the most difficult cases for instance segmentation algorithms to handle is when the
instance mask is split due to occlusion. Figure 2.19 shows that our method can handle these
situations, by allowing pixels to vote for their instance centroid with geometry. Methods
which rely on watershed approaches (Bai and Urtasun, 2017), or instance edge identification
approaches fail in these scenarios.

To obtain segmentations for each instance, we now need to estimate the instance centres,
în. We propose to consider the estimated instance vectors, x̂n, as votes in a Hough parameter
space and use a clustering algorithm to identify these instance centres. OPTICS (Ankerst
et al., 1999), is an efficient density based clustering algorithm. It is able to identify an
unknown number of multi-scale clusters with varying density from a given set of samples.
We chose OPTICS for two reasons. Crucially, it does not assume knowledge of the number
of clusters like algorithms such as k-means (MacQueen et al., 1967). Secondly, it does not
assume a canonical instance size or density like discretised binning approaches (Comaniciu
and Meer, 2002). Using OPTICS, we cluster the points cn + x̂n into a number of estimated
instances, î. We can then assign each pixel, pn to the instance closest to its estimated instance
vector, cn + x̂n.
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(a) Input Image (b) Instance Segmentation

Fig. 2.19 This example shows two cars which are occluded by trees and lampposts, making the
instance segmentation challenging. Our instance segmentation method can handle occlusions
effectively. We can correctly handle segmentation masks which are split by occlusion, yet
part of the same instance, by incorporating semantics and geometry.

Depth Regression. We train with supervised labels using pixel-wise metric inverse depth
using a L1 loss function: LDepth =

1
|ND|∑ND

∥∥dn− d̂n
∥∥

1. Our architecture estimates inverse

depth, d̂n, because it can represent points at infinite distance (such as sky). We can obtain
inverse depth labels, dn, from a RGBD sensor or stereo imagery. Pixels which do not have an
inverse depth label are ignored in the loss.

2.5.6 Model Architecture

We base our model on the recently introduced DeepLabV3 (Chen et al., 2017) segmentation
architecture. We use ResNet101 (He et al., 2016) as our base feature encoder, with dilated
convolutions, resulting in a feature map which is downsampled by a factor of 8 compared with
the original input image. We then append dilated (atrous) convolutional ASPP module (Chen
et al., 2017). This module is designed to improve the contextual reasoning of the network.
We use an ASPP module comprised of four parallel convolutional layers, with 256 output
channels and dilation rates (1, 12, 24, 36), with kernel sizes (12, 32, 32, 32). Additionally,
we also apply global average pooling to the encoded features, and convolve them to 256
dimensions with a 1×1 kernel. We apply batch normalisation to each of these layers and
concatenate the resulting 1280 features together. This produces the shared representation
between each task.

We then split the network, to decode this representation to a given task output. For each
task, we construct a decoder consisting of two layers. First, we apply a 1×1 convolution,
outputting 256 features, followed by batch normalisation and a non-linear activation. Finally,
we convolve this output to the required dimensions for a given task. For classification, this
will be equal to the number of semantic classes, otherwise the output will be 1 or 2 channels
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for depth or instance segmentation respectively. Finally, we apply bilinear upsampling to
scale the output to the same resolution as the input.

The majority of the model’s parameters and depth is in the feature encoding, with very
little flexibility in each task decoder. This illustrates the attraction of multi-task learning;
most of the compute can be shared between each task to learn a better shared representation.

Optimisation.

For all experiments, we use an initial learning rate of 2.5×10−3 and polynomial learning
rate decay (1− iter

max iter )
0.9. We train using stochastic gradient descent, with Nesterov updates

and momentum 0.9 and weight decay 10−4. We conduct all experiments in this paper using
PyTorch.

For the experiments on the Tiny CityScapes validation dataset (using a down-sampled
resolution of 128×256) we train over 50,000 iterations, using 256×256 crops with batch
size of 8 on a single NVIDIA 1080Ti GPU. We apply random horizontal flipping to the data.

For the full-scale CityScapes benchmark experiment, we train over 100,000 iterations
with a batch size of 16. We apply random horizontal flipping (with probability 0.5) and
random scaling (selected from 0.7 - 2.0) to the data during training, before making a 512×512
crop. The training data is sampled uniformly, and is randomly shuffled for each epoch.
Training takes five days on a single computer with four NVIDIA 1080Ti GPUs.

2.5.7 Experiments

We demonstrate the efficacy of our method on CityScapes (Cordts et al., 2016), a large
dataset for road scene understanding. It comprises of stereo imagery, from automotive grade
stereo cameras with a 22cm baseline, labelled with instance and semantic segmentations
from 20 classes. Depth images are also provided, labelled using SGM (Hirschmüller, 2008),
which we treat as pseudo ground truth. Additionally, we assign zero inverse depth to pixels
labelled as sky. The dataset was collected from a number of cities in fine weather and consists
of 2,975 training and 500 validation images at 2048× 1024 resolution. 1,525 images are
withheld for testing on an online evaluation server.

In Table 2.10 we compare individual models to multi-task learning models using a naïve
weighted loss or the task uncertainty weighting we propose in this paper. To reduce the
computational burden, we train each model at a reduced resolution of 128× 256 pixels,
over 50,000 iterations. When we downsample the data by a factor of four, we also need to
scale the disparity labels accordingly. Table 2.10 clearly illustrates the benefit of multi-task
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Task Weights Segmentation Instance Inverse Depth
Loss Seg. Inst. Depth IoU [%] Mean Error [px] Mean Error [px]

Segmentation only 1 0 0 59.4% - -
Instance only 0 1 0 - 4.61 -
Depth only 0 0 1 - - 0.640

Unweighted sum of losses 0.333 0.333 0.333 50.1% 3.79 0.592

Approx. optimal weights 0.89 0.01 0.1 62.8% 3.61 0.549

2 task uncertainty weighting ✓ ✓ 61.0% 3.42 -
2 task uncertainty weighting ✓ ✓ 62.7% - 0.533
2 task uncertainty weighting ✓ ✓ - 3.54 0.539

3 task uncertainty weighting ✓ ✓ ✓ 63.4% 3.50 0.522
Table 2.10 Quantitative improvement when learning semantic segmentation, instance segmentation and depth with our multi-task
loss. Experiments were conducted on the Tiny CityScapes dataset (sub-sampled to a resolution of 128×256). Results are shown
from the validation set. We observe an improvement in performance when training with our multi-task loss, over both single-task
models and weighted losses. Additionally, we observe an improvement when training on all three tasks (3×✓) using our multi-task
loss, compared with all pairs of tasks alone (denoted by 2×✓). This shows that our loss function can automatically learn a better
performing weighting between the tasks than the baselines.
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(a) Input image (b) Segmentation output (c) Instance output (d) Depth output

Fig. 2.20 Qualitative results for multi-task learning of geometry and semantics for road
scene understanding with a single network trained on all tasks. We observe that multi-
task learning improves the smoothness and accuracy for depth perception because it learns a
representation that uses cues from other tasks, such as segmentation (and vice versa).

learning, which obtains significantly better performing results than individual task models.
For example, using our method we improve classification results from 59.4% to 63.4%.

We also compare to a number of naïve multi-task losses. We compare weighting each
task equally and using approximately optimal weights. Using a uniform weighting results
in poor performance, in some cases not even improving on the results from the single task
model. Obtaining approximately optimal weights is difficult with increasing number of tasks
as it requires an expensive grid search over parameters. However, even these weights perform
worse compared with our proposed method. Figure 2.17 shows that using task uncertainty
weights can even perform better compared to optimal weights found through fine-grained grid
search. We believe that this is due to two reasons. First, grid search is restricted in accuracy
by the resolution of the search. Second, optimising the task weights using a homoscedastic
noise term allows for the weights to be dynamic during training. In general, we observe that
the uncertainty term decreases during training which improves the optimisation process.

We benchmark our model using the full-size CityScapes dataset. In Table 2.11 we
compare to a number of other state of the art methods in all three tasks. Our method is the
first model which completes all three tasks with a single model. We compare favourably with
other approaches, outperforming many which use comparable training data and inference
tools. Figure 2.20 shows some qualitative examples of our model.

This task uncertainty loss is also robust to the value we use to initialise the task uncertainty
values. One of the attractive properties of our approach to weighting multi-task losses is that
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Semantic Segmentation Instance Segmentation Monocular Disparity Estimation
Method IoU class iIoU class IoU cat iIoU cat AP AP 50% AP 100m AP 50m Mean Error [px] RMS Error [px]

Semantic segmentation, instance segmentation and depth regression methods (this work)

Multi-Task Learning 78.5 57.4 89.9 77.7 21.6 39.0 35.0 37.0 2.92 5.88

Semantic segmentation and instance segmentation methods

Uhrig et al. (Uhrig et al., 2016) 64.3 41.6 85.9 73.9 8.9 21.1 15.3 16.7 - -

Instance segmentation only methods

Mask R-CNN (He et al., 2017) - - - - 26.2 49.9 37.6 40.1 - -
Deep Watershed (Bai and Urtasun, 2017) - - - - 19.4 35.3 31.4 36.8 - -
R-CNN + MCG (Cordts et al., 2016) - - - - 4.6 12.9 7.7 10.3 - -

Semantic segmentation only methods

DeepLab V3 (Chen et al., 2017) 81.3 60.9 91.6 81.7 - - - - - -
PSPNet (Zhao et al., 2017) 81.2 59.6 91.2 79.2 - - - - - -
Adelaide (Lin et al., 2015) 71.6 51.7 87.3 74.1 - - - - - -

Table 2.11 CityScapes Benchmark (Cordts et al., 2016). We show results from the test dataset using the full resolution of
1024× 2048 pixels. For the full leaderboard, please see www.cityscapes-dataset.com/benchmarks. The disparity (inverse depth)
metrics were computed against the CityScapes depth maps, which are sparse and computed using SGM stereo (Hirschmuller, 2005).
Note, these comparisons are not entirely fair, as many methods use ensembles of different training datasets. Our method is the first to
address all three tasks with a single model.
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it is robust to the initialisation choice for the homoscedastic noise parameters. Figure 2.21
shows that for an array of initial choices of logσ2 from −2.0 to 5.0 the homoscedastic noise
and task loss is able to converge to the same minima. Additionally, the homoscedastic noise
terms converges after only 100 iterations, while the network requires 30,000+ iterations to
train. Therefore our model is robust to the choice of initial value for the weighting terms.

Figure 2.22 shows losses and uncertainty estimates for each task during training of the
final model on the full-size CityScapes dataset. At a point 500 iterations into training, the
model estimates task variance of 0.60, 62.5 and 13.5 for semantic segmentation, instance
segmentation and depth regression, respectively. Becuase the losses are weighted by the
inverse of the uncertainty estimates, this results in a task weighting ratio of approximately 23
: 0.22 : 1 between semantics, instance and depth, respectively. At the conclusion of training,
the three tasks have uncertainty estimates of 0.075, 3.25 and 20.4, which results in effective
weighting between the tasks of 43: 0.16 : 1. This shows how the task uncertainty estimates
evolve over time, and the approximate final weightings the network learns. We observe they
are far from uniform, as is often assumed in previous literature.

Interestingly, we observe that this loss allows the network to dynamically tune the
weighting. Typically, the homoscedastic noise terms decrease in magnitude as training
progresses. This makes sense, as during training the model becomes more effective at a task.
Therefore the error, and uncertainty, will decrease. This has a side-effect of increasing the
effective learning rate – because the overall uncertainty decreases, the weight for each task’s
loss increases. In our experiments we compensate for this by annealing the learning rate with
a power law.

2.5.8 Discussion

There are many interesting questions left unanswered. Firstly, our results show that there is
usually not a single optimal weighting for all tasks. Therefore, what is the optimal weighting?
Is multi-task learning an ill-posed optimisation problem without a single higher-level goal?

A second interesting question is where the optimal location is for splitting the shared
encoder network into separate decoders for each task? What network depth is best for the
shared multi-task representation? We leave this to future work.

Why do the semantics and depth tasks out-perform the semantics and instance tasks
results in Table 2.10? Clearly the three tasks explored in this paper are complimentary
and useful for learning a rich representation about the scene. It would be beneficial to be
able to quantify the relationship between tasks and how useful they would be for multi-task
representation learning. (Zamir et al., 2018) is some excellent initial work towards this goal.
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(a) Semantic segmentation task
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(b) Instance segmentation task
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(c) Depth regression task

Fig. 2.21 Training plots showing convergence of homoscedastic noise and task loss for
an array of initialisation choices for the homoscedastic uncertainty terms for all three tasks.
Each plot shows the the homoscedastic noise value optimises to the same solution from a
variety of initialisations. Despite the network taking 10,000+ iterations for the training loss
to converge, the task uncertainty converges very rapidly after only 100 iterations.
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(a) Semantic segmentation task
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(b) Instance segmentation task
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(c) Depth regression task

Fig. 2.22 Learning task uncertainty. These training plots show the losses and task uncer-
tainty estimates for each task during training. Results are shown for the final model, trained
on the fullsize CityScapes dataset.
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(a) Input image (b) Semantic segmenta-
tion

(c) Instance segmenta-
tion

(d) Depth regression

Fig. 2.23 More qualitative results on test images from the CityScapes dataset.
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(a) Input image (b) Semantic segmenta-
tion

(c) Instance segmenta-
tion

(d) Depth regression

Fig. 2.24 Example where our model fails on the CityScapes test data. The first two
rows show examples of challenging visual effects such as reflection, which confuse the
model. Rows three and four show the model incorrectly distinguishing between road and
footpath. This is a common mistake, which we believe is due to a lack of contextual reasoning.
Rows five, six and seven demonstrate incorrect classification of a rare class (bus, fence and
motorbike, respectively). Finally, the last two rows show failure due to occlusion and where
the object is too big for the model’s receptive field. Additionally, we observe that failures
are highly correlated between the modes, which makes sense as each output is conditioned
on the same feature vector. For example, in the second row, the incorrect labelling of the
reflection as a person causes the depth estimation to predict human geometry.
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2.6 Summary

Finally, a comment on the model’s failure modes. The model exhibits similar failure
modes to state-of-the-art single-task models. For example, failure with objects out of the
training distribution, occlusion or visually challenging situations. However, we also observe
our multi-task model tends to fail with similar effect in all three modalities. For example, an
erroneous pixel’s prediction in one task will often be highly correlated with error in another
modality. Some examples can be seen in Figure 2.23.

2.6 Summary

In this chapter, we investigated the problem of scene understanding and estimating the
semantics and geometry of a scene from a single image. We briefly summarise the main
conclusions within the three main themes of this dissertation.

End-to-end deep learning. First, we presented SegNet, a deep convolutional network
architecture for per-pixel output, capable of being trained end-to-end. The main motivation
behind SegNet was the need to design an efficient architecture for road scene understanding
which is efficient both in terms of memory and computational time. We analysed SegNet
and compared it with other important variants to reveal the trade-offs involved in designing
architectures for segmentation. Those which store the encoder network feature maps in full
perform best but consume more memory during inference time. SegNet on the other hand is
more efficient since it only stores the max-pooling indices of the feature maps and uses them
in its decoder network to achieve good performance.

Uncertainty. We presented a novel Bayesian deep learning framework to learn a mapping
to aleatoric uncertainty from the input data, which is composed on top of epistemic uncertainty
models based on Monte Carlo dropout. We derived a framework for both regression and
classification applications. We showed that it is important to model aleatoric uncertainty for:

• Large data situations, where epistemic uncertainty is explained away,

• Real-time applications, because we can form aleatoric models without expensive Monte
Carlo samples.

And epistemic uncertainty is important for:

• Safety-critical applications, because epistemic uncertainty is required to understand
examples which are different from training data,

• Small datasets where the training data is sparse.
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However aleatoric and epistemic uncertainty models are not mutually exclusive. We
showed that the combination is able to achieve new state-of-the-art results on depth regression
and semantic segmentation benchmarks.

Geometry. Finally, in order to construct a scene understanding system, algorithms must
learn both semantics and geometry. We showed how to formulate this as a multi-task learning
problem. We construct a single model which is capable of learning a single representation of
semantics and geometry.

We showed that correctly weighting loss terms is of paramount importance for multi-task
learning problems. We demonstrated that homoscedastic (task) uncertainty is an effective
way to weight losses. We derived a principled loss function which can learn a relative
weighting automatically from the data and is robust to the weight initialization. We showed
that this can improve performance for scene understanding tasks with a unified architec-
ture for semantic segmentation, instance segmentation and per-pixel depth regression. We
demonstrated modelling task-dependent homoscedastic uncertainty improves the model’s
representation and each task’s performance when compared to separate models trained on
each task individually.
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Chapter 3

Localisation

3.1 Introduction

In this chapter we address the problem of localisation — estimating the camera’s position
and orientation in three-dimensional space. This is also colloquially known as the kidnapped
robot problem and is essential for many applications including mobile robotics, navigation
and augmented reality.

Designing a system for reliable large scale localisation is a challenging problem. The
discovery of the positioning system in mammalian brains, located in the hippocampus, was
awarded the 2014 Nobel prize in Physiology or Medicine (Moser et al., 2008; O’Keefe and
Nadel, 1978). State of the art computer vision localisation systems perform very well within
controlled environments (Engel et al., 2014; Klein and Murray, 2007; Mur-Artal et al., 2015;
Newcombe et al., 2011; Sattler et al., 2014). However, we are yet to see their wide-spread use
in the wild because of their inability to cope with novel viewpoints or large environmental
changes.

Many of the visual localisation systems use point landmarks such as corners (Robertson
and Cipolla, 2004), SIFT (Lowe, 2004) or ORB (Rublee et al., 2011) to localise. These
features perform well for incremental tracking and estimating ego-motion (Mur-Artal et al.,
2015). However, point features cannot encode context and are not able to create a representa-
tion which is sufficiently robust to challenging real-world scenarios. For example, they often
fail under varying weather, lighting or environmental conditions. Additionally, they lack the
ability to capture global context and require robust aggregation of hundreds of points to form
a consensus to predict pose (Zeisl et al., 2015).

In this Chapter, Section 3.4 and Section 3.5 was collaborative work with Matthew Grimes and Roberto
Cipolla and was published in (Kendall et al., 2015).
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Fig. 3.1 PoseNet (Kendall et al., 2015) is trained end-to-end to estimate the camera’s six
degree of freedom pose from a single monocular image.

This chapter proposes a framework which learns to localise from a single image using
deep learning. Our localisation system, PoseNet (Kendall and Cipolla, 2016, 2017; Kendall
et al., 2015), takes a single RGB image and regresses the camera’s 6-DoF pose relative to a
scene. Figure 3.1 illustrates an example. The algorithm is simple in the fact that it consists
of a convolutional neural network trained end-to-end to regress the camera’s orientation
and position. We show that we can localise more robustly using deep learning, compared
with point features such as SIFT (Lowe, 2004). PoseNet learns a representation using the
entire image context based on appearance and shape. These features generalise well and can
localise across challenging lighting and appearance changes. It operates in real time, taking
5ms to run, and obtains approximately 2m and 3 degrees accuracy for large scale outdoor
scenes (covering a ground area of up to 50,000m2). It is very scalable as it does not require a
large database of landmarks. Rather, it learns a mapping from pixels to a high dimensional
space linear with pose.

We introduce novel techniques and loss functions to design the deep convolutional
neural network camera pose regressor. We leverage transfer learning from recognition to
relocalisation with very large scale classification datasets. Additionally we use structure from
motion to automatically generate training labels (camera poses) from a video of the scene.
This reduces the human labour in creating labelled video datasets to just recording the video.
We show that the system learns to compute feature vectors which are easily mapped to pose,
and which also generalize to unseen scenes with a few additional training samples.
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The remainder of the chapter discusses two improvements to PoseNet, using geometry
and uncertainty.

The main weakness of PoseNet in its initial form was that, despite its scalability and
robustness, it does not produce metric accuracy which is comparable to other geometric
methods (Sattler et al., 2014; Svarm et al., 2014). We argue that a contributing factor to this
was because PoseNet naively applied a deep learning model end-to-end to learn camera pose.
Therefore, we reconsider this problem with a grounding in geometry. We wish to build upon
the decades of research into multi-view geometry (Hartley and Zisserman, 2000) to improve
our ability to use deep learning to regress camera pose.

We then improve the performance of PoseNet with geometrically-formed loss functions.
It is not trivial to simply regress position and rotation quantities using supervised learning.
PoseNet required a weighting factor to balance these two properties, but it was not tolerant
to the selection of this hyperparameter. In Section 3.4.3 we explore loss functions which
remove this hyperparameter, or optimise it directly from the data. In Section 3.4.3 we show
how to train directly from the scene geometry using the reprojection error.

In Section 3.5 we demonstrate our system on an array of datasets, ranging from individual
indoor rooms, to the Dubrovnik city dataset (Li et al., 2012). We show that our geometric ap-
proach can improve PoseNet’s efficacy across many different datasets – narrowing the deficit
to traditional SIFT feature-based algorithms. For outdoor scenes ranging from 50,000m2 to
2km2 we can achieve relocalisation accuracies of a few meters and a few degrees. In small
rooms we are able to achieve accuracies of 0.2-0.4m.

Finally, in Section 3.6 we show how to formulate Bayesian deep learning models for
localisation. We introduce Bayesian PoseNet which can estimate model uncertainty. We
show that these models produce well-calibrated measures of uncertainty which is useful
for practical applications. For example, we show that this uncertainty can recognise novel
images that are from new environments the model has not seen before during training. This
application is directly useful for addressing the loop-closure problem.

3.2 Localisation

Large scale localisation research can be divided into two categories; place recognition and
metric localisation. Place recognition discretises the world into a number of landmarks
and attempts to identify which place is visible in a given image. Traditionally, this has
been modelled as an image retrieval problem (Chen et al., 2011; Cummins and Newman,
2008; Schindler et al., 2007; Torii et al., 2013) enabling the use of efficient and scalable
retrieval approaches (Nister and Stewenius, 2006; Philbin et al., 2007) such as Bag-of-Words
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(BoW) (Sivic et al., 2003), VLAD (Delhumeau et al., 2013; Jégou et al., 2010), and Fisher
vectors (Jegou et al., 2012). Deep learning models have also been shown to be effective for
creating efficient descriptors. Many approaches leverage classification networks (Babenko
and Lempitsky, 2015; Gong et al., 2014; Razavian et al., 2014b; Tolias et al., 2016), and
fine tune them on localisation datasets (Babenko et al., 2014). Other work of note is PlaNet
(Weyand et al., 2016) which trained a classification network to localise images on a world
scale. However, all these networks must discretise the world into places and are unable to
produce a fine grained estimate of 6-DOF pose.

In contrast, metric localisation techniques estimate the metric position and orientation of
the camera. Traditionally, this has been approached by computing the pose from correspon-
dences between two-dimensional (2-D) features in the query image and three-dimensional
(3-D) points in the model, which are determined through descriptor matching (Choudhary
and Narayanan, 2012; Li et al., 2012, 2010; Sattler et al., 2012; Svarm et al., 2014). This
assumes that the scene is represented by a 3-D structure-from-motion model. The full 6
degree-of-freedom pose of a query image can be estimated very precisely (Sattler et al.,
2014). However these methods require a 3-D model with a large database of features and
efficient retrieval methods. They are expensive to compute, often do not scale well, and are
often not robust to changing environmental conditions (Walch et al., 2016).

In this work, we address the more challenging problem of metric localisation with deep
learning. In PoseNet (Kendall et al., 2015), we introduced the technique of training a
convolutional neural network to regress camera pose. It combines the strengths of place
recognition and localisation approaches: it can globally relocalise without a good initial pose
estimate, and produces a continuous metric pose. Rather than building a map (or database of
landmark features), the neural network learns features whose size, unlike a map, does not
require memory linearly proportional to the size of the scene.

Our method removes several issues faced by typical SLAM pipelines, such as the need to
store densely spaced key-frames, the need to maintain separate mechanisms for appearance-
based localization and landmark-based pose estimation, and a need to establish frame-
to-frame feature correspondence. We do this by mapping monocular images to a high-
dimensional representation that is robust to nuisance variables. We empirically show that
this representation is a smoothly varying injective (one-to-one) function of pose, allowing
us to regress pose directly from the image without need of tracking. The scene may include
multiple objects and need not be viewed under consistent conditions. For example the scene
may include dynamic objects like people and cars or experience changing weather conditions.

Later work has extended PoseNet to use RGB-D input (Li et al., 2017), learn relative
ego-motion (Melekhov et al., 2017), improve the context of features (Walch et al., 2016),
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localise over video sequences (Clark et al., 2017) and interpret relocalisation uncertainty with
Bayesian Neural Networks (Kendall and Cipolla, 2016). Additionally, (Walch et al., 2016)
demonstrate PoseNet’s efficacy on featureless indoor environments, where they demonstrate
that SIFT based structure from motion techniques fail in the same environment.

Although PoseNet is scalable and robust (Kendall et al., 2015), it does not produce
sufficiently accurate estimates of Pose compared to traditional methods (Sattler et al., 2014).
It was designed with a naive regression loss function which trains the network end-to-end
without any consideration for geometry. This problem is the focus of this chapter – we do not
want to throw away the decades of research into multi-view geometry (Hartley and Zisserman,
2000). We improve PoseNet’s performance by learning camera pose with a fundamental
treatment of scene geometry.

3.3 Relocalisation Datasets

In this section, we describe the datasets we use in this chapter to demonstrate our localisation
algorithms. Deep learning often requires very large datasets. However annotating ground
truth labels on these datasets is often expensive or very labour intensive. We can leverage
structure from motion (Snavely et al., 2008), or similar algorithms (Shotton et al., 2013), to
autonomously generate training labels (camera poses) from image data (Kendall et al., 2015).
We use three datasets to benchmark our approach. These datasets are summarised in Table 3.1
and example imagery is shown in Figure 3.2. We use these datasets to demonstrate our
method’s performance across a range of settings and scales. We endeavour to demonstrate
the general applicability of the approach.

Cambridge Landmarks (Kendall et al., 2015) was collected for this thesis and is pub-
licly released for use2. It provides labelled video data to train and test pose regression
algorithms in an outdoor urban setting. It was collected using a smart phone and structure
from motion was used to generate the pose labels (Wu, 2013). Significant urban clutter such
as pedestrians and vehicles were present and data was collected from many different points in
time representing different lighting and weather conditions. Train and test images are taken
from distinct walking paths and not sampled from the same trajectory making the regression
challenging.

7 Scenes (Shotton et al., 2013) is an indoor dataset which was collected with a Kinect
RGB-D sensor. Ground truth poses were computed using Kinect Fusion (Shotton et al.,
2013). The dataset contains seven scenes which were captured around an office building.

2The Cambridge Landmarks dataset is publicly available for download at http://mi.eng.cam.ac.uk/
projects/localisation/

77

http://mi.eng.cam.ac.uk/projects/localisation/
http://mi.eng.cam.ac.uk/projects/localisation/


Localisation

(a) 7 Scenes Dataset - 43,000 images from seven scenes in small indoor environments (Shotton et al.,
2013).

(b) Cambridge Landmarks Dataset - over 10,000 images from six scenes around Cambridge, UK
(Kendall et al., 2015).

(c) Dubrovnik 6K Dataset - 6,000 images from a variety of camera types in Dubrovnik, Croatia (Li
et al., 2010).

Fig. 3.2 Example images randomly chosen from each dataset. This illustrates the wide
variety of settings and scales and the challenging array of environmental factors such as
lighting, occlusion, dynamic objects and weather which are captured in each dataset.
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Dataset Type Scale Imagery Scenes Train Images Test Images 3-D Points Spatial Area
7 Scenes Indoor Room RGB-D sensor (Kinect) 7 26,000 17,000 - 4×3m
Cambridge Landmarks Outdoor Street Mobile phone camera 6 8,380 4,841 2,097,191 100×500m
Dubrovnik 6K Outdoor Small town Internet images (Flikr) 1 6,044 800 2,106,456 1.5×1.5km

Table 3.1 Summary of the localisation datasets used in this chapter’s experiments. We compare 7 Scenes (Shotton et al., 2013),
Cambridge Landmarks (Kendall et al., 2015), Dubrovnik (Li et al., 2012) and the San Francisco (Chen et al., 2011) datasets. These
datasets are all publicly available. They demonstrate our method’s performance over a range of scales for both indoor and outdoor
applications.
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Each scene typically consists of a single room. The dataset was originally created for RGB-D
relocalisation. It is extremely challenging for purely visual relocalisation using SIFT-like
features, as it contains many ambiguous textureless features.

Dubrovnik 6K (Li et al., 2012) is a dataset consisting of 6,044 train and 800 test images
which were obtained from the internet. They are taken from Dubrovnik’s old town in Croatia
which is a UNESCO world heritage site. The images are predominantly captured by tourists
with a wide variety of camera types. Ground truth poses for this dataset were computed using
structure from motion.

3.4 Model for Camera Pose Regression

In this section we describe the details of the convolutional neural network model we train to
estimate camera pose directly from a monocular image, I. Our network outputs an estimate,
p̂, for pose, p, given by a 3-D camera position x̂ and orientation q̂. We use a quaternion to
represent orientation, for reasons discussed in Section 3.4.2. Pose p is defined relative to
an arbitrary global reference frame. In practice we centre this global reference frame at the
mean location of all camera poses in the training dataset. We train the model with supervised
learning using pose labels, p = [x,q], obtained through structure from motion, or otherwise
(Section 3.3).

3.4.1 Architecture

Our pose regression formulation is capable of being applied to any neural network trained
through back propagation. For the experiments in this chapter we adapt state of the art
deep neural network architectures for classification, such as GoogLeNet (Szegedy et al.,
2015) and ResNet (He et al., 2016), as a basis for developing our pose regression network.
This allows us to use pretrained weights, such as those from a model trained to classify
images in the ImageNet dataset (Deng et al., 2009). We observe that these pretrained features
regularise and improve performance in PoseNet through transfer learning (Oquab et al.,
2014). Although, to generalise PoseNet, we may apply it to any deep architecture designed
for image classification as follows:

1. Remove the final linear regression and softmax layers used for classification

2. Append a linear regression layer. This fully connected layer is designed to output a
seven dimensional pose vector representing position (3 dimensions) and orientation (4
dimensional quaternion)
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3. Insert a normalisation layer to normalise the four dimensional quaternion orientation
vector to unit length

3.4.2 Pose Representation

An important consideration when designing a machine learning system is the representation
space of the output. We can easily learn camera position in Euclidean space (Kendall et al.,
2015). However, learning orientation is more complex. In this section we compare a number
of different parametrisations used to express rotational quantities; Euler angles, axis-angle,
SO(3) rotation matrices and quaternions (Altmann, 2005). We evaluate their efficacy for
deep learning.

Firstly, Euler angles are easily understandable as an interpretable parametrisation of 3-D
rotation. However, they have two problems. Euler angles wrap around at 2π radians, having
multiple values representing the same angle. Therefore they are not injective, which causes
them to be challenging to learn as a uni-modal scalar regression task. Additionally, they
do not provide a unique parametrisation for a given angle and suffer from the well-studied
problem of gimbal lock (Altmann, 2005). The axis-angle representation is another three
dimensional vector representation. However like Euler angles, it too suffers from a repetition
around the 2π radians representation.

Rotation matrices are a over-parametrised representation of rotation. For 3-D problems,
the set of rotation matrices are 3× 3 dimensional members of the special orthogonal Lie
group, SO(3). These matrices have a number of interesting properties, including orthonor-
mality. However, it is difficult to enforce the orthogonality constraint when learning a SO(3)
representation through back-propagation.

In this work, we chose quaternions as our orientation representation. Quaternions are
favourable because arbitrary four dimensional values are easily mapped to legitimate rotations
by normalizing them to unit length. This is a simpler process than the orthonormalisation
required of rotation matrices. Quaternions are a continuous and smooth representation of
rotation. They lie on the unit manifold, which is a simple constraint to enforce through
back-propagation. Their main downside is that they have two mappings for each rotation,
one on each hemisphere. However, in Section 3.4.3 we show how to adjust the loss function
to compensate for this.

3.4.3 Loss Function

This far, we have described the structure of the pose representation we would like our network
to learn. Next, we discuss how to design an effective loss function to learn to estimate the
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camera’s 6 degree of freedom pose. This is a particularly challenging objective because it
involves learning two distinct quantities - rotation and translation - with different units and
scales.

This section defines a number of loss functions and explores their efficacy for camera pose
regression. We begin in Section 3.4.3 by describing a basic weighted loss function which we
proposed in (Kendall et al., 2015). We improve on this in Section 3.4.3 by introducing a novel
loss function which can learn the weighting between rotation and translation automatically,
using an estimate of the homoscedastic task uncertainty. Further, in Section 3.4.3 we
describe a loss function which combines position and orientation as a single scalar using
the reprojection error geometry. In Section 3.5.1 we compare the performance of these loss
functions, and discusses their trade-offs.

Learning Position and Orientation

We can learn to estimate camera position by forming a smooth, continuous and injective
regression loss in Euclidean space, Lx(I) = ∥x− x̂∥

γ
, with norm given by γ . In Kendall et al.

(2015) we used the L2 Euclidean norm.
However, learning camera orientation is not as simple. In Section 3.4.2 we described

a number of options for representing orientation. Quaternions are an attractive choice for
deep learning because they are easily formulated in a continuous and differentiable way. The
set of rotations lives on the unit sphere in quaternion space. We can easily map any four
dimensional vector to a valid quaternion rotation by normalising it to unit length. Kendall
et al. (2015) demonstrates how to learn to regress quaternion values:

Lq(I) =
∥∥∥∥q− q̂

∥q̂∥

∥∥∥∥
γ

(3.1)

Using a distance norm, γ , in Euclidean space makes no effort to keep q on the unit sphere.
We find, however, that during training, q becomes close enough to q̂ such that the distinction
between spherical distance and Euclidean distance becomes insignificant. For simplicity,
and to avoid hampering the optimization with unnecessary constraints, we chose to omit the
spherical constraint. The main problem with quaternions is that they are not injective because
they have two unique values (from each hemisphere) which map to a single rotation. This is
because quaternion, q, is identical to −q. To address this, we constrain all quaternions to one
hemisphere such that there is a unique value for each rotation.
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Simultaneously Learning Position and Orientation

The challenging aspect of learning camera pose is designing a loss function which is able
to learn both position and orientation. Initially, we proposed a method to combine position
and orientation into a single loss function with a linear weighted sum (Kendall et al., 2015),
shown in (3.2):

Lβ (I) = Lx(I)+βLq(I) (3.2)

Because x and q are expressed in different units, a scaling factor, β , is used to balance the
losses. This hyper-parameter attempts to keep the expected value of position and orientation
errors approximately equal.

Interestingly, we observe that a model which is jointly trained to regress the camera’s
position and orientation performs better than separate models trained on each task individually.
Figure 3.3 shows that with just position, or just orientation information, the network was
not able to determine the function representing camera pose with as great accuracy. The
model learns a better representation for pose when supervised with both translation and
orientation labels. We also experimented with branching the network lower down into two
separate components to regress position and orientation. However, we found that it too was
less effective, for similar reasons: separating into distinct position and orientation features
denies each the information necessary to factor out orientation from position, or vice versa.

However the consequence of this was that the hyper-parameter β required significant
tuning to get reasonable results. In the loss function (3.2) a balance β must be struck between
the orientation and translation penalties (Figure 3.3). They are highly coupled as they are
regressed from the same model weights. We found β to be greater for outdoor scenes as
position errors tended to be relatively greater. Following this intuition it is possible to fine
tune β using grid search. For the indoor scenes it was between 120 to 750 and outdoor scenes
between 250 to 2000. This is an expensive task in practice, as each experiment can take
days to complete. It is desirable to find a loss function which removes this hyperparameter.
Therefore, the remainder of this section explores different loss functions which aim to find
an optimal weighting automatically.

Learning an Optimal Weighting

Ideally, we would like a loss function which is able to learn position and orientation optimally,
without including any hyper parameters. For this reason, we use the multi-task loss function
from Section 2.5, which is able to learn a weighting between the position and orientation
objective functions. We formulate it using homoscedastic uncertainty which we can learn
using probabilistic deep learning (as described in Section 2.5). Homoscedastic uncertainty is a
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Fig. 3.3 Relative performance of position and orientation regression on a single model with
a range of scale factors for an indoor scene from the King’s College scene in Cambridge
Landmarks, using the loss function in (3.2). This demonstrates that learning with the optimum
scale factor leads to the network uncovering a more accurate pose function.

measure of uncertainty which does not depend on the input data, as opposed to heteroscedastic
uncertainty which is a function of the input data (see Section 2.4). Rather, it captures the
uncertainty of the task itself. In Section 2.5 we show how to use this insight to combine
losses for different tasks in a probabilistic manner. Here we show how to apply this to learn
camera position and orientation (with a Gaussian likelihood):

Lσ (I) = Lx(I)σ̂−2
x + log σ̂

2
x +Lq(I)σ̂−2

q + log σ̂
2
q (3.3)

where we optimise the homoscedastic uncertainties, σ̂2
x , σ̂2

q , through backpropagation with
respect to the loss function. These uncertainties are free scalar values, not model outputs.
They represent the homoscedastic (task) noise.

This loss consists of two components; the residual regressions and the uncertainty
regularization terms. We learn the variance, σ2, implicitly from the loss function. As the
variance is larger, it has a tempering effect on the residual regression term; larger variances
(or uncertainty) results in a smaller residual loss. The second regularization term prevents
the network from predicting infinite uncertainty (and therefore zero loss). As we expect
quaternion values to have much smaller values (they are constrained to the unit manifold),
their noise, σ2

q should be much smaller than the position noise, σ2
x , which can be many

meters in magnitude. As σ2
q should be much smaller than σ2

x , orientation regression should
be weighted much higher than position – with a similar effect to β in (3.2).
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In practice, we learn ŝ := log σ̂2,:

Lσ (I) = Lx(I)exp(−ŝx)+ ŝx +Lq(I)exp(−ŝq)+ ŝq. (3.4)

This is more stable than regressing the variance, σ2, because the loss avoids a potential
division by zero. The exponential mapping also allows us to regress unconstrained scalar
values, where exp(−si) is resolved to the positive domain giving valid values for variance.
We find that this loss is very robust to our initialisation choice for the homoscedastic task
uncertainty values. Only an approximate initial guess is required, we arbitrarily use initial
values of ŝx = 0.0, ŝq =−3.0, for all scenes.

Learning from Geometric Reprojection Error

Perhaps a more desirable loss is one that does not require balancing of rotational and
positional quantities at all. Reprojection error of scene geometry is a representation which
combines rotation and translation naturally in a single scalar loss (Hartley and Zisserman,
2000). Reprojection error is given by the residual between 3-D points in the scene projected
onto a 2-D image plane using the ground truth and predicted camera pose. It therefore
converts rotation and translation quantities into image coordinates. This naturally weights
translation and rotation quantities depending on the scene and camera geometry.

All losses in this chapter so far assume images and pose labels are provided. In this section,
we formulate a reprojection error loss that assumes we have images and the corresponding
3-D points from the scene geometry. First, we define a function, π, which maps a 3-D point,
g, to 2-D image coordinates, (u,v)T :

π(x,q,g) 7→

(
u
v

)
(3.5)

where x and q represent the camera position and orientation. This function, π, is defined as:u′

v′

w′

= K(Rg+x),

(
u
v

)
=

(
u′/w′

v′/w′

)
(3.6)

where K is the intrinsic calibration matrix of the camera, and R is the mapping of q to its
SO(3) rotation matrix, q4×1 7→ R3×3.

We formulate this loss by taking the norm of the reprojection error between the predicted
and ground truth camera pose. We take the subset, G ′, of all 3-D points in the scene, G ,
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which are visible in the image I. The final loss (3.7) is given by the mean of all the residuals
from points, gi ∈ G ′:

Lg(I) =
1
|G ′| ∑

gi∈G ′
∥π(x,q,gi)−π(x̂, q̂,gi)∥γ

(3.7)

where x̂ and q̂ are the predicted camera poses from PoseNet, with x and q the ground truth
label, with norm, γ , which is discussed in Section 3.4.3.

Note that because we are projecting 3-D points using both the ground truth and predicted
camera pose we can apply any arbitrary camera model, as long as we use the same intrinsic
parameters for both cameras. Therefore for simplicity, we set the camera intrinsics, K, to the
identity matrix – camera calibration is not required.

This loss implicitly combines rotation and translational quantities into image coordinates.
Minimising reprojection error is often the most desirable balance between these quantities for
many applications, such as augmented reality. The key advantage of this loss is that it allows
the model to vary the weighting between position and orientation, depending on the specific
geometry in the training image. For example, training images with geometry which is far
away would balance rotational and translational loss differently to images with geometry
very close to the camera.

Interestingly, when experimenting with the original weighted loss in (3.2) we observed
that the hyperparameter β was an approximate function of the scene geometry. We observed
that it was a function of the landmark distance and size in the scene. Our intuition was that
the optimal choice for β was approximating the reprojection error in the scene geometry. For
example, if the scene is very far away, then rotation is more significant than translation and
vice versa. This function is not trivial to model for complex scenes with a large number of
landmarks. It will vary significantly with each training example in the dataset. By learning
with reprojection error we can use our knowledge of the scene geometry more directly to
automatically infer this weighting.

Projecting geometry through a projection model is a differentiable operation involving
matrix multiplication. Therefore we can use this loss to train our model with stochastic
gradient descent. It is important to note that we do not need to know the intrinsic camera
parameters to project this 3-D geometry. This is because we apply the same projection to
both the model prediction and ground truth measurement, so we can use arbitrary values.

A practical consideration, when training with stochastic gradient descent, is that it is
desirable to have uniform tensors for each data-point in a mini-batch, in order to parallelise
computation. Therefore, at training time we sample a random 100 points from the subset of
the scene’s geometry which is visible by the camera’s view. This ensures a uniformly shaped
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3.4 Model for Camera Pose Regression

Median Error Accuracy
Loss function x [m] q [°] < 2m,5° [%]
Linear sum, β = 500 (3.2) 1.52 1.19 65.0%
Learn weighting with homoscedastic uncertainty (3.3) 0.99 1.06 85.3%
Reprojection loss does not converge
Learn weighting pretraining 7→ Reprojection loss (3.7) 0.88 1.04 90.3%

(a) Cambridge Landmarks, King’s College

Median Error Accuracy
Loss function x [m] q [°] < 2m,5° [%]
Linear sum, β = 500 (3.2) 13.1 4.68 30.1%
Learn weighting with homoscedastic uncertainty (3.3) 9.88 4.73 41.7%
Reprojection loss does not converge
Learn weighting pretraining 7→ Reprojection loss (3.7) 7.90 4.40 48.6%

(b) Dubrovnik 6K

Table 3.2 Comparison of different loss functions. We use an L1 distance for the residuals
in each loss. Linear sum combines position and orientation losses with a constant scaling
parameter β (Kendall and Cipolla, 2016) and is defined in (3.2). Learn weighting is the
loss function in (3.3) which learns to combine position and orientation using homoscedastic
uncertainty. Reprojection error implicitly combines rotation and translation by using the
reprojection error of the scene geometry as the loss (3.7). We find that homoscedastic
uncertainty is able to learn an effective weighting between position and orientation quantities.
The reprojection loss was not able to converge from random initialisation. However, when
used to fine-tune a network pretrained with (3.3) it yields the best results.

mini-batch, while having enough points to sample. If less than 100 points are visible, then
we repeat the points until 100.

It should be noted that we need to have some knowledge of the scene’s geometry in order
to have 3-D points to reproject. The geometry is often known; if our data is obtained through
structure from motion, RGBD data or other sensory data (see Section 3.3). Only points from
the scene which are visible in the image I are used to compute the loss. We also found it
was important for numerical stability to ignore points which are projected outside the image
bounds.

Regression Norm

An important choice for these losses is the regression norm, ∥ ∥
γ
. Typically, deep learning

models use an L1 = ∥ ∥1 or L2 = ∥ ∥2. We can also use robust norms such as Huber’s loss
(Huber, 2011) and Tukey’s loss (Hoaglin et al., 1983), which have been successfully applied
to deep learning (Belagiannis et al., 2015). For camera pose regression, we found that they
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negatively impacted performance by over-attenuating difficult examples. We suspect that for
more noisy datasets these robust regression functions might be beneficial. With the datasets
used in this chapter, we found the L1 norm to perform best and therefore use γ = 1. It does
not increase quadratically with magnitude or over-attenuate large residuals.

3.5 Localisation Experiments

To train and benchmark our model on a number of datasets we rescale the input images
such that the shortest side is of length 256. We normalise the images so that input pixel
intensities range from −1 to 1. We train our PoseNet architecture using an implementation in
TensorFlow (Abadi et al., 2016). All models are optimised end-to-end with ADAM (Kingma
and Ba, 2014) using the default parameters and a learning rate of 1×10−4. We train each
model until the training loss converges. We use a batch size of 64 on a NVIDIA Titan X
(Pascal) GPU, training takes approximately 20k - 100k iterations, or 4 hours - 1 day.

3.5.1 Comparison of Loss Functions

In Table 3.2 we compare different combinations of losses and regression norms. We compare
results for a scene in the Cambridge Landmarks dataset (Kendall et al., 2015) and the
Dubrovnik 6K dataset (Li et al., 2012), which has imagery from a range of cameras.

We find that modelling homoscedastic uncertainty with the loss in (3.3) is able to ef-
fectively learn a weighting between position and orientation. It outperforms the constant
weighting used in loss (3.2). The reprojection loss in (3.7) is unable to train the model
from a random initialisation. We observe that the model gets stuck in a poor local minima,
when using any of the regression norms. However, the reprojection loss is able to improve
localisation performance when using weights pretrained with any of the other losses. For
example, we can take the best performing model using the loss from (3.3) and fine tune with
the reprojection loss (3.7). We observe that this loss is then able to converge effectively. This
shows that the reprojection loss is not robust to large residuals. This is because reprojected
points can be easily placed far from the image centre if the network makes a poor pose
prediction. Therefore, we recommend the following two-step training scheme:

1. Train the model using the loss in (3.3), learning the weighting between position and
orientation.

2. If the scene geometry is known (for example from structure from motion or RGBD
camera data) then fine-tune the model using the reprojection loss in (3.7).
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Area or Active Search (SIFT) PoseNet (β weight) Bayesian PoseNet PoseNet Spatial LSTM PoseNet PoseNet
Scene Volume (Sattler et al., 2016) (Kendall et al., 2015) (Kendall and Cipolla, 2016) (Walch et al., 2016) Learn σ2 Weight Geometric Reprojection
Great Court 8000m2 – – – – 7.00m, 3.65° 6.83m, 3.47°
King’s College 5600m2 0.42m, 0.55° 1.66m, 4.86° 1.74m, 4.06° 0.99m, 3.65° 0.99m, 1.06° 0.88m, 1.04°
Old Hospital 2000m2 0.44m, 1.01° 2.62m, 4.90° 2.57m, 5.14° 1.51m, 4.29° 2.17m, 2.94° 3.20m, 3.29°
Shop Façade 875m2 0.12m, 0.40° 1.41m, 7.18° 1.25m, 7.54° 1.18m, 7.44° 1.05m, 3.97° 0.88m, 3.78°
St Mary’s Church 4800m2 0.19m, 0.54° 2.45m, 7.96° 2.11m, 8.38° 1.52m, 6.68° 1.49m, 3.43° 1.57m, 3.32°
Street 50000m2 0.85m, 0.83° – – – 20.7m, 25.7° 20.3m, 25.5°

Chess 6m3 0.04m, 1.96° 0.32m, 6.60° 0.37m, 7.24° 0.24m, 5.77° 0.14m, 4.50° 0.13m, 4.48°
Fire 2.5m3 0.03m, 1.53° 0.47m, 14.0° 0.43m, 13.7° 0.34m, 11.9° 0.27m, 11.8° 0.27m, 11.3°
Heads 1m3 0.02m, 1.45° 0.30m, 12.2° 0.31m, 12.0° 0.21m, 13.7° 0.18m, 12.1° 0.17m, 13.0°
Office 7.5m3 0.09m, 3.61° 0.48m, 7.24° 0.48m, 8.04° 0.30m, 8.08° 0.20m, 5.77° 0.19m, 5.55°
Pumpkin 5m3 0.08m, 3.10° 0.49m, 8.12° 0.61m, 7.08° 0.33m, 7.00° 0.25m, 4.82° 0.26m, 4.75°
Red Kitchen 18m3 0.07m, 3.37° 0.58m, 8.34° 0.58m, 7.54° 0.37m, 8.83° 0.24m, 5.52° 0.23m, 5.35°
Stairs 7.5m3 0.03m, 2.22° 0.48m, 13.1° 0.48m, 13.1° 0.40m, 13.7° 0.37m, 10.6° 0.35m, 12.4°

Table 3.3 Median localisation results for the Cambridge Landmarks (Kendall et al., 2015) and 7 Scenes (Shotton et al., 2013)
datasets. We compare the performance of various RGB-only algorithms. Active search (Sattler et al., 2016) is a state-of-the-art
traditional SIFT keypoint based baseline. We demonstrate a notable improvement over PoseNet’s (Kendall et al., 2015) baseline
performance using the learned σ2 and reprojection error proposed in this chapter, narrowing the margin to the state of the art SIFT
technique.
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3.5.2 Benchmarking Localisation Accuracy

In Table 3.3 we show that our geometry based loss outperforms the original PoseNet’s naive
loss function (Kendall et al., 2015). We observe a consistent and significant improvement
across both indoor 7 Scenes outdoor Cambridge Landmarks datasets. We conclude that
we can simultaneously learn both position and orientation more effectively by considering
scene geometry. The improvement is notably more pronounced for the 7Scenes dataset. We
believe this is due to the significantly larger amount of training data for each scene in this
dataset, compared with Cambridge Landmarks. We also outperform the improved PoseNet
architecture with spatial LSTMs (Walch et al., 2016). However, this method is complimentary
to the loss functions in this chapter, and it would be interesting to explore the union of these
ideas.

We observe a difference in relative performance between position and orientation when
optimising with respect to reprojection error (3.7) or homoscedastic uncertainty (3.3). Overall,
optimising reprojection loss improves rotation accuracy, sometimes at the expense of some
positional precision.

3.5.3 Comparison to SIFT-Feature Approaches

Table 3.3 also compares to a state-of-the-art traditional SIFT feature based localisation
algorithm, Active Search (Sattler et al., 2016). This method outperforms PoseNet, and
is effective in feature-rich outdoor environments. However, in the 7Scenes dataset this
deficit is less pronounced. The indoor scenes contain much fewer point features and there is
significantly more training data. As an explanation for the deficit in these results, PoseNet
only uses 256×256 pixel images, while SIFT based methods require images of a few mega-
pixels in size (Sattler et al., 2016). Additionally, PoseNet is able to localise an image in 5ms,
scaling constantly with scene area, while traditional SIFT feature approaches require over
100ms, and scale with scene size (Sattler et al., 2016).

In Table 3.4 we compare our approach on the Dubrovnik dataset to other geometric
techniques which localise by registering SIFT features (Lowe, 2004) to a large 3-D model
(Li et al., 2012). Although our method improves significantly over the original PoseNet
model, it is still yet to reach the fine grained accuracy of these methods (Li et al., 2010;
Sattler et al., 2011; Svarm et al., 2014; Zeisl et al., 2015). We hypothesise that this is due
to a lack of training data, with only 6k images across the town. However, our algorithm is
significantly faster than these approaches. Furthermore, it is worth noting that PoseNet only
sees a 256×256 resolution image, while these methods register the full size images, often
with a few million pixels.
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Position Orientation
Method Mean [m] Median [m] Mean [°] Median [°]
PoseNet (this work) 40.0 7.9 11.2 4.4
APE (Svarm et al., 2014) - 0.56 - -
Voting (Zeisl et al., 2015) - 1.69 - -
Sattler, et al. (Sattler et al., 2011) 14.9 1.3 - -
P2F (Li et al., 2010) 18.3 9.3 - -

Table 3.4 Localisation results on the Dubrovnik dataset (Li et al., 2012), comparing to a
number of state-of-the-art point-feature techniques. Our method is the first deep learning
approach to benchmark on this challenging dataset. We achieve comparable performance,
while our method only requires a 256×256 pixel image and is much faster to compute.

We show that PoseNet is able to effectively localize across both the indoor 7 Scenes
dataset and outdoor Cambridge Landmarks dataset in Table 3.3. To validate that the model is
regressing pose beyond that of the training examples we show the performance for finding
the nearest neighbour representation in the training data from the feature vector produced
by the localisation network. As our performance exceeds this we conclude that the network
is successfully able to regress pose beyond training examples (see Figure 3.4). We also
compare our algorithm to the RGB-D SCoRe Forest algorithm (Shotton et al., 2013).

Figure 3.7 shows cumulative histograms of localisation error for two indoor and two
outdoor scenes. We note that although the SCoRe forest is generally more accurate, it requires
depth information, and uses higher-resolution imagery. The indoor dataset contains many
ambiguous and textureless features which make relocalisation without this depth modality
extremely difficult. We note our method often localizes the most difficult testing frames,
above the 95th percentile, more accurately than SCoRe across all the scenes. We also observe
that dense cropping only gives a modest improvement in performance. It is most important
in scenes with significant clutter like pedestrians and cars, for example King’s College, Shop
Façade and St Mary’s Church.

We explored the robustness of this method beyond what was tested in the dataset with
additional images from dusk, rain, fog, night and with motion blur and different cameras with
unknown intrinsics. Figure 3.6 shows the convolutional neural network generally handles
these challenges well. SfM with SIFT fails in all these cases so we were not able to generate
a ground truth camera pose, however we infer the accuracy by viewing the 3-D reconstruction
from the predicted camera pose, and overlaying this onto the input image.
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Fig. 3.4 Magnified view of a sequence of training (green) and testing (blue) cameras for
King’s College. We show the predicted camera pose in red for each testing frame. The
images show the test image (top), the predicted view from our model overlaid in red on the
input image (middle) and the nearest neighbour training image overlaid in red on the input
image (bottom). This shows our system can interpolate camera pose effectively in space
between training frames.

3.5.4 Robustness Against Training Image Spacing

We demonstrate in Figure 3.8 that, for an outdoor scale scene, we gain little by spacing the
training images more closely than 4m. The system is robust to very large spatial separation
between training images, achieving reasonable performance even with only a few dozen
training samples. The pose accuracy deteriorates gracefully with increased training image
spacing, whereas SIFT-based SfM sharply fails after a certain threshold as it requires a small
baseline (Lowe, 2004).

3.5.5 Importance of Transfer Learning

In general deep networks require large amounts of training data. We sidestep this problem by
starting our pose training from a network pretrained on giant datasets such as ImageNet and
Places. Similar to what has been demonstrated for classification tasks, Figure 3.9 shows how
transfer learning can be utilised effectively between classification and complicated regression
tasks. Such ‘transfer learning’ has been demonstrated elsewhere for training classifiers
(Bengio et al., 2013; Oquab et al., 2014; Razavian et al., 2014a), but here we demonstrate
transfer learning from classification to the qualitatively different task of pose regression.
It is not immediately obvious that a network trained to output pose-invariant classification
labels would be suitable as a starting point for a pose regressor. We find, however, that this
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King’s College Street Old Hospital Shop FaçadeSt Mary’s Church

Fig. 3.5 Map of dataset showing training frames (green), testing frames (blue) and their
predicted camera pose (red). The testing sequences are distinct trajectories from the training
sequences and each scene covers a very large spatial extent.

is not a problem in practice. A possible explanation is that, in order for its output to be
invariant to pose, the classifier network must keep track of pose, to better factor its effects
away from identity cues. This would agree with our own findings that a network trained to
output position and orientation outperforms a network trained to output only position. By
preserving orientation information in the intermediate representations, it is better able to
factor the effects of orientation out of the final position estimation. Transfer learning gives
not only a large improvement in training speed, but also end performance.

The relevance of data is also important. In Figure 3.9 the Places and ImageNet curves
initially have the same performance. However, ultimately the Places pretraining performs
better due to being a more relevant dataset to this localisation task.

3.5.6 Visualising Features Relevant to Pose

Figure 3.10 shows example saliency maps produced by PoseNet. The saliency map, as used
in (Simonyan et al., 2013), is the magnitude of the gradient of the loss function with respect
to the pixel intensities. This uses the sensitivity of the pose with respect to the pixels as an
indicator of how important the network considers different parts of the image.

These results show that the strongest response is observed from higher-level features
such as windows and spires. However a more surprising result is that PoseNet is also very
sensitive to large textureless patches such as road, grass and sky. These textureless patches
may be more informative than the highest responding points because the effect of a group of
pixels on the pose variable is the sum of the saliency map values over that group of pixels.
This evidence points to the net being able to localize off information from these textureless
surfaces, something which interest-point based features such as SIFT or SURF fail to do.
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(a) Relocalisation with increasing levels of motion blur. The system is able to recognize the pose as
high level features such as the contour outline still exist. Blurring the landmark increases apparent
contour size and the system believes it is closer.

(b) Relocalisation under difficult dusk and night lighting conditions. In the dusk sequences, the
landmark is silhouetted against the backdrop however again the model seems to recognize the
contours and estimate pose.

(c) Relocalisation with dif-
ferent weather conditions.
PoseNet is able to effectively
estimate pose in fog and
rain.

(d) Relocalisation with sig-
nificant people, vehicles and
other dynamic objects.

(e) Relocalisation with
unknown camera intrinsics:
SLR with focal length
45mm (left), and iPhone
4S with focal length 35mm
(right) compared to the
dataset’s camera which had
a focal length of 30mm.

Fig. 3.6 Robustness to challenging real life situations. Registration with point based
techniques such as SIFT fails in examples (a-c), therefore ground truth measurements are
not available. None of these types of challenges were seen during training. As convolutional
neural networks are able to understand objects and contours they are still successful at
estimating pose from the building’s contour in the silhouetted examples (b) or even under
extreme motion blur (a). Many of these quasi invariances were enhanced by pretraining from
the scenes dataset. 94
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Fig. 3.7 Localization performance. These figures show our localization accuracy for both
position and orientation as a cumulative histogram of errors for the entire training set. The
regression network outperforms the nearest neighbour feature matching which demonstrates
we regress finer resolution results than given by training. Comparing to the RGB-D SCoRe
Forest approach shows that our method is competitive, but outperformed by a more expensive
depth approach. Our method does perform better on the hardest few frames, above the 95th
percentile, with our worst error lower than the worst error from the SCoRe approach.

The last observation is that PoseNet has an attenuated response to people and other noisy
objects, effectively masking them. These objects are dynamic, and the model has identified
them as not appropriate for localisation.

3.5.7 Viewing the Internal Representation

t-SNE (Van der Maaten and Hinton, 2008) is an algorithm for embedding high-dimensional
data in a low dimensional space, in a way that tries to preserve Euclidean distances. It is often
used, as we do here, to visualize high-dimensional feature vectors in two dimensions. In
Figure 3.11 we apply t-SNE to the feature vectors computed from a sequence of video frames
taken by a pedestrian. As these figures show, the feature vectors are a function that smoothly
varies with, and is largely one-to-one with, pose. This ‘pose manifold’ can be observed not
only on networks trained on other scenes, but also networks trained on classification image
sets without pose labels. This further suggests that classification networks preserve pose
information up to the final layer, regardless of whether it’s expressed in the output. However,
the mapping from feature vector to pose becomes more complicated for networks not trained
on pose data. Furthermore, as this manifold exists on scenes that the model was not trained
on, the model must learn some generic representation of the relationship between landmarks,
geometry and camera motion. This demonstrates that the feature vector that is produced from
regression is able to generalize to other tasks in the same way as classification networks.
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Fig. 3.8 Robustness to a decreasing training baseline for the King’s College scene. Our
system exhibits graceful decline in performance as fewer training samples are used.

3.5.8 System Efficiency

Figure 3.12 compares system performance of PoseNet on a modern desktop computer. Our
network is very scalable, as it only takes 50 MB to store the weights, and 5ms to compute each
pose, compared to the gigabytes and minutes for metric localisation with SIFT. These values
are independent of the number of training samples in the system while metric localisation
scales O(n2) with training data size (Wu, 2013). For comparison, matching to the network’s
nearest neighbour is also shown. This requires storing feature vectors for each training frame,
then perform a linear search to find the nearest neighbour for a given test frame.

3.6 Localisation Uncertainty

In this section, we extend the PoseNet framework to a Bayesian deep learning model which
is able to determine the uncertainty of localisation using the ideas from Section 2.4. Our
Bayesian convolutional neural network requires no additional memory, and can relocalise
in under 50ms per frame on a GPU. By leveraging this probabilistic approach, we achieve
10 - 15% improvement on state of the art performance on Cambridge Landmarks, a vary
large urban relocalisation dataset, and 7 Scenes, a challenging indoor relocalisation dataset.
Furthermore, our approach qualitatively improves the system by producing a measure of
model uncertainty. We leverage this uncertainty value to estimate:

• metric relocalisation error for both position and orientation,
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0 20 40 60 80 100
Training epochs

Te
st

 e
rr

or

AlexNet pretrained on Places
GoogLeNet with random initialisation
GoogLeNet pretrained on ImageNet
GoogLeNet pretrained on Places
GoogLeNet pretrained on Places, then another indoor landmark

Fig. 3.9 Importance of transfer learning. Shows how pretraining on large datasets gives
an increase in both performance and training speed.

Fig. 3.10 Saliency maps. This figure shows the saliency map superimposed on the input
image. The saliency maps suggest that the convolutional neural network exploits not only
distinctive point features (à la SIFT), but also large textureless patches, which can be as
informative, if not more so, to the pose. This, combined with a tendency to disregard dynamic
objects such as pedestrians, enables it to perform well under challenging circumstances. (Best
viewed electronically.)

• the confidence of modelling the data (detect if the scene is actually present in the input
image).

Understanding model uncertainty is an important feature for a localisation system. A
non-Bayesian system which outputs point estimates does not interpret if the model is making
sensible predictions or just guessing at random. By measuring uncertainty we can understand
with what confidence we can trust the prediction.

Secondly, it is easy to imagine visually similar landmarks and we need to be able to
understand with what confidence can we trust the result. For example, there are many
examples of buildings with visually ambiguous structures, such as window, which are
tessellated along a wall.
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(a) (b) (c)

Fig. 3.11 Feature vector visualisation. t-SNE visualisation of the feature vectors from
a video sequence traversing an outdoor scene (King’s College) in a straight line. Colour
represents time. The feature representations are generated from the model with weights
trained on Places (a), Places then another outdoor scene, St Mary’s Church (b), Places
then this outdoor scene, King’s College (c). Despite (a,b) not being trained on this scene,
these visualizations suggest that it is possible to compute the pose as a simple, if non-linear,
function of these representations.

Fig. 3.12 Implementation efficiency. Experimental speed and memory use of the regression
network, nearest neighbour network feature vector baseline and SIFT relocalisation methods.

Following Chapter 2, we conclude that it is more important to model epistemic uncertainty
for localisation. This is because training data is often sparse. Furthermore, it is critical to
detect if the input image is one from the scene which the model is trained to localise with.
This is also known as loop-closure. It requires a strong ability to detect novel input images
which are outside the training data distribution. In Section 2.4 we show that this is something
aleatoric uncertainty cannot model, therefore in this section we focus on modelling epistemic
uncertainty.

3.6.1 Modelling Localisation Uncertainty

Although many of the modern SLAM algorithms do not consider localisation uncertainty
(Engel et al., 2014; Klein and Murray, 2007; Li et al., 2012), previous probabilistic algorithms
have been proposed. Bayesian approaches include extended Kalman filters and particle filter
approaches such as FastSLAM (Thrun et al., 2005). However these approaches estimate
uncertainty from sensor noise models, not the uncertainty of the model to represent the
data. Our proposed framework does not assume any input noise but measures the model
uncertainty for localisation.

Neural networks which consider uncertainty are known as Bayesian neural networks
(Denker and LeCun, 1991; MacKay, 1992). They offer a probabilistic interpretation of deep
learning models by inferring distributions over the networks’ weights (see Section 2.4 for a
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(a) King’s College (b) St Mary’s Church (c) St Mary’s Church.

Fig. 3.13 3-D scatter plots of Monte Carlo pose samples from the Bayesian convolutional
neural network (top row) from an input image (bottom row) from the posterior distribution.
We show typical examples from two scenes (a,b) and a visually ambiguous example (c). In
green are the results from the first auxiliary pose regressor and in blue are samples from the
final pose regressor. It shows that the auxiliary pose predictions (from the shallower sub-net)
are typically multimodal however results from the final regressor are unimodal.

detailed introduction). They are often very computationally expensive, increasing the number
of model parameters without increasing model capacity significantly. Performing inference
in Bayesian neural networks is a difficult task, and approximations to the model posterior are
often used, such as variational inference (Graves, 2011).

In Section 2.4, we explained that we can consider sampling with dropout as a way of
getting samples from the posterior distribution of models. We leverage this method to obtain
probabilistic inference of our pose regression model, forming a Bayesian PoseNet. Dropout
is commonly used as a regularizer in convolutional neural networks to prevent over-fitting
and co-adaption of features (Srivastava et al., 2014). During training with stochastic gradient
descent, dropout randomly removes connections within a network. By doing this it samples
from a number of thinned networks with reduced width. At test time, standard dropout
approximates the effect of averaging the predictions of all these thinned networks by using
the weights of the unthinned network. This can be thought of as sampling from a distribution
over models.

we briefly summarise the method to obtain a Bayesian convolutional neural network
introduced by (Gal and Ghahramani, 2016). Gal and Ghahramani (Gal and Ghahramani,
2016) show that dropout can be used at test time to impose a Bernoulli distribution over the
convolutional net filter’s weights, without requiring any additional model parameters. This is
achieved by sampling the network with randomly dropped out connections at test time. We
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can consider these as Monte Carlo samples which sample from the posterior distribution of
models. This is significantly different to the ‘probabilities’ obtained from a softmax classifier
in classification networks. The softmax function provides relative probabilities between the
class labels, but not an overall measure of the model’s uncertainty.

We are interested in finding the posterior distribution over the convolutional weights, W,
given our observed training data X and labels Y.

p(W | X,Y) (3.8)

In general, this posterior distribution is not tractable, we must use some learning method to
approximate the distribution of these weights (Denker and LeCun, 1991). We use the ap-
proximation of Monte Carlo dropout (Gal and Ghahramani, 2015), introduced in Section 2.4.
Monte Carlo dropout places a Bernoulli distribution over the model’s weights. Sampling from
this model, with stochastic dropout masks at test time, estimates the posterior distribution.
The dropout probabilities, pi, could be optimised (Gal et al., 2017). However we leave them
at the standard probability of dropping a connection as 50%, i.e. pi = 0.5 (Srivastava et al.,
2014). Training the network with stochastic gradient descent will encourage the model to
learn a distribution of weights which explains the data well while preventing over-fitting.

As a result of this dropout interpretation of Bayesian convolutional neural networks,
a dropout layer should be added after every convolutional layer in the network. However
in practice this is not the case as is explained in section 3.6.4. Using standard libraries
such as (Jia et al., 2014) we can obtain an efficient implementation of a Bernoulli Bayesian
convolutional neural network. At test time we perform inference by averaging stochastic
samples from the dropout network.

Therefore the final algorithm for the probabilistic pose net is as follows:

Algorithm 1 Probabilistic PoseNet
Require: image, learned weights W, number of samples

1: for sample = 1 to number of samples do
2: set network’s weights to learned values
3: for each weight in network do
4: with probability p set neuron activation to zero
5: end for
6: sample← evaluate network
7: end for
8: compute pose as average of all samples
9: compute uncertainty as a function of the samples’ variance

Ensure: 6-DOF pose, uncertainty
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We also explored the possibility of using dense sliding window evaluation of the convolu-
tional pose regressor over the input image to obtain a distribution of poses. This was done
by taking 224×224 crops at regular intervals from the 455×256 pixel input image. This is
equivalent to the densely evaluated PoseNet introduced in Section 3.4. The variance of these
pose samples also correlates with localisation error, however not as strongly as sampling
from a Bernoulli distribution over the weights.

3.6.2 Estimating Uncertainty

We can evaluate the posterior pose distribution from the Bayesian convolutional network by
integrating with Monte Carlo sampling. Figure 3.13 shows a plot of Monte Carlo samples
from the output of the posterior network in blue. We observe that the samples vary by a few
metres, with less variance in the vertical dimension than the horizontal plane.

Additionally, the green points in 3.13 show the output from the first auxiliary pose
regressor from the GoogLeNet architecture (see figure 3 of (Szegedy et al., 2015)). This
output regresses pose from the representation after the inception (sub-net) layer 3. This
result is at a much shallower depth and provides an insight as to what the network learns
with additional depth. A similar result can be observed for the quaternion samples for the
rotational component of pose.

For the full network’s output (blue) we obtain a distribution that appears to be drawn
from both an isotropic and single-modal Gaussian. The network appears to be very certain
about the specific pose. By sampling with dropout over the distribution of models we observe
some isotropic scatter around a single pose estimate.

At a shallower depth, with the first auxiliary pose regressor (green), the results are multi-
modal. This is especially true for visually ambiguous images such as (c) in figure 3.13.
The window in image (c) is repeated along the face of St Mary’s Church. Using dropout to
sample the distribution of models at this shallower depth produces distributions which have
components drawn from multiple pose hypotheses. This suggests that this extra depth in
the network is able to learn a representation that is sufficiently discriminative to distinguish
visually similar landmarks.

Therefore, we fit a unimodal Gaussian to the samples from the network’s final pose
regressor. We treat the mean of these samples as the point estimate for pose. For an
uncertainty measurement we take the trace of the unimodal Gaussian’s covariance matrix.
We have found the trace to be an effective scalar measure of uncertainty. The trace is a sum
of the eigenvalues, which is rotationally invariant and represents the uncertainty that the
Gaussian contains effectively. Figure 3.19 empirically shows this uncertainty measure is
strongly correlated with metric error in relocalisation.
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(b) Rotational uncertainty

Fig. 3.14 Histograms of uncertainty values from the testing images in the Street scene.
In red we show the Gamma distribution used to model these populations. The Gamma
distribution is a reasonable fit of the positively distributed, right skewed data.

We also considered using the determinant, which is a measure of the Gaussian’s volume.
However the determinant takes the product of the eigenvalues which means that if some
are large and others are small then the resulting value will be small. This was the case as
the resulting Gaussian often had a strong elongated component to it, as can be observed in
figure 3.13. We found that using the determinant resulted in a numerically poorer measure of
uncertainty.

We tried other models which accounted for multi-modality in the data:

• taking the geometric median instead of the mean as a point prediction,

• fitting a mixture of Gaussians model to the data using the Dirichlet process (Blei and
Jordan, 2006),

• clustering the samples using k-means and taking the mean of the largest cluster.

However we found that all of these methods produced poorer localisation uncertainty than
fitting a single unimodal Gaussian to the data.

3.6.3 Creating a Comparable Uncertainty Statistic

In order to compare the uncertainty values we obtained from a model, we propose the
following method to create a normalized measure, or Z-score. This is an uncertainty value
which is able to be directly compared between models.
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Fig. 3.15 Plot of translational uncertainty against rotational uncertainty for test images
in the St Mary’s Church and King’s College scene and for all scenes. This shows that the
model uncertainty values are very strongly correlated for both rotation and translation. This
suggests that we can form a single uncertainty value which represents the overall model
uncertainty.

To achieve this, firstly we evaluate the test dataset and record the predicted camera poses
and associated uncertainties for each scene. Typical distribution of uncertainty results for the
Street scene can be viewed in figure 3.14. Examining this distribution, we chose to model it
with a Gamma distribution for three reasons; it requires only two parameters, the distribution
is constrained to strictly positive values only and is right skewed.

Obtaining an estimate for the distribution of model uncertainty values for images from a
scene’s test set allows us to evaluate where a new image’s uncertainty values sit compared
to the population. We can now assign a percentile to both the translational and rotational
uncertainty values by using the cumulative distribution function for the Gamma distribution.
We treat this percentile as a Z-score and generate this from a separate distribution for both
the translational and rotational uncertainties, as well as separately for each scene.

Figure 3.15 shows that the rotational and translational uncertainties are highly correlated.
We can therefore compute an overall localisation uncertainty by averaging the Z-score for
translational and rotational uncertainty. This gives us a final single percentile score which we
assign as the confidence of the pose prediction for a given model.

3.6.4 Architecture

To obtain a fully Bayesian model we should perform dropout sampling after every convo-
lutional layer. However we found in practice this was not empirically optimal. In (Kendall
et al., 2015) we discovered that fine tuning from pretrained filters trained on a large scale
dataset such as Places (Zhou et al., 2014b) enhanced localisation accuracy significantly. This
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is again true with the probabilistic network. However these pretrained filters were trained
without the use of dropout.

Fine-tuning from weights pretrained on the Places (Zhou et al., 2014b) dataset, we
experimented with adding dropout throughout the model at different depths. We observe a
performance drop in localisation when using the fully Bayesian convolutional neural network.
Using dropout after every convolutional layer throughout the network acted as too strong
a regularizer and degraded performance by approximately 10% . We obtained the optimal
result when we included it only before convolutions which had randomly initialized weights.
Therefore we add dropout after inception (sub-net) layer 9 and after the fully connected
layers in the pose regressor.

Yosinski et al. (Yosinski et al., 2014) argues that transferring weights can cause perfor-
mance to drop in two situations. Firstly when the representation is too specific. However
this is unlikely to be the case as we found the weights could successfully generalize to the
new task (Kendall et al., 2015). The second explanation was that features may co-adapt
fragilely and that transferring them breaks these co-adaptions. We believe this may be the
case. The local minima that the weights were optimised to without dropout requires complex
co-adaptions that are not able to optimise to a network with the same performance when
using dropout.

We did not experiment with changing the dropout probability, or attempt to optimise this
hyperparameter. We leave this to future work.

With this architecture we can then sample from the probabilistic model at test time to
obtain an estimate of pose. We can improve localisation performance by averaging the Monte
Carlo dropout samples (Gal and Ghahramani, 2016). Figure 3.16 gives empirical results
suggesting that 40 samples are enough to achieve convergence of Monte Carlo samples. We
show that less than five samples are typically required to surpass the performance of using a
single pose regression convolutional net. After approximately 40 samples no more increase
in localisation accuracy is observed.

3.6.5 Uncertainty Experiments

We evaluate the performance of the Bayesian convolutional neural network pose regressor
on the localisation dataset, Cambridge Landmarks, which was introduced in (Kendall et al.,
2015). Additionally we present results on an indoor relocalisation dataset, 7 Scenes (Shotton
et al., 2013). Table 3.17 presents the experimental results of localisation accuracy, averaging
100 Monte Carlo dropout samples from the probabilistic PoseNet. We compare this to
PoseNet introduced in Section 3.4 and to a nearest neighbour baseline (Kendall et al., 2015)
which finds the nearest pose from the training set in feature vector space. We also compare
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(b) Rotation

Fig. 3.16 localisation accuracy in the St Mary’s Church scene for different number of
Monte Carlo samples. Results are averaged over 8 repetitions, with 1 standard deviation
error bars shown. Horizontal lines are shown representing the performance of PoseNet
(green) and densely evaluated PoseNet (red) (Kendall et al., 2015). This shows that Monte
Carlo sampling provides significant improvement over both these point estimate models after
a couple of samples. Monte Carlo sampling converges after around 40 samples and no more
significant improvement is observed with more samples.

to the SCORE Forest algorithm which is state-of-the-art for relocalisation with depth data,
however the need for RGB-D data constrains it to indoor use.

The results in table 3.17 show that using Monte Carlo dropout (Gal and Ghahramani,
2016) results in a considerable improvement in localisation accuracy, improving performance
from Section 3.4 by 10−15%. Allowing the model to take into account the uncertainty of
model selection, by placing a Bernoulli distribution over the weights, results in more accurate
localisation. The Monte Carlo samples allow us to obtain estimates of poses probabilistically
over the distribution of models. Taking the mean of these samples results in a more accurate
solution.

Figure 3.18 shows a cumulative histogram of errors for two scenes. This shows that our
probabilistic PoseNet performs consistently better than the non-probabilistic PoseNet for all
error thresholds.

3.6.6 Uncertainty as an Estimate of Error

Figure 3.19 shows that the uncertainty estimate is very strongly correlated with metric relo-
calisation error. This shows that we can use the uncertainty estimate to predict relocalisation
error. The plot shows that this relationship is linear for both translational and rotational
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Spatial SCORE Forest Dist. to Conv. Bayesian
Scene Extent (Uses RGB-D) Nearest Neighbour PoseNet Dense PoseNet PoseNet
=|=|===== King’s College 140 × 40m N/A 3.34m, 2.96° 2.41m, 2.57° 1.82m, 2.38° 1.74m, 2.03°
Street 500 × 100m N/A 1.95m 4.51° 4.92m, 4.99° 3.69m, 3.93° 3.36m, 3.06°
Old Hospital 50 × 40m N/A 5.38m, 4.51° 3.32m, 2.93° 3.33m, 2.83° 2.57m, 2.57°
Shop Façade 35 × 25m N/A 2.10m, 5.20° 1.69m, 4.84° 1.41m, 4.51° 1.25m, 3.77°
St Mary’s Church 80 × 60m N/A 4.48m, 5.65° 3.67m, 6.58° 3.11m, 6.42° 2.54m, 5.46°
Average N/A 3.45m, 4.57° 3.20m, 4.38° 2.67m, 4.02° 2.29m, 3.38°

Chess 3×2×1m 0.03m, 0.66° 0.41m, 5.60° 0.34m, 4.06° 0.32m, 3.76° 0.37m, 3.62°
Fire 2.5×1× 1m 0.05m, 1.50° 0.54m, 7.77° 0.57m, 7.33° 0.57m, 7.02° 0.43m, 6.84°
Heads 2×0.5×1m 0.06m, 5.50° 0.28m, 7.00° 0.29m, 6.00° 0.30m, 6.09° 0.31m, 6.01°
Office 2.5×2×1.5m 0.04m, 0.78° 0.49m, 6.02° 0.52m, 5.33° 0.48m, 5.09° 0.48m, 4.02°
Pumpkin 2.5×2×1m 0.04m, 0.68° 0.58m, 6.08° 0.47m, 4.33° 0.49m, 4.32° 0.61m, 3.54°
Red Kitchen 4×3×1.5m 0.04m, 0.76° 0.58m, 5.65° 0.63m, 4.32° 0.64m, 4.17° 0.58m, 3.77°
Stairs 2.5×2×1.5m 0.32m, 1.32° 0.56m, 7.71° 0.47m, 7.45° 0.48m, 7.49° 0.48m, 6.95°
Average 0.08m, 1.60° 0.49m, 6.55° 0.47m, 5.55° 0.47m, 5.42° 0.47m, 4.96°

Fig. 3.17 Median localisation results for the Cambridge Landmarks (Kendall et al., 2015)
and 7 Scenes (Shotton et al., 2013) datasets. We compare the performance of the probabilis-
tic PoseNet to PoseNet and a nearest neighbour baseline (Kendall et al., 2015). Additionally
we compare to SCORE Forests (Shotton et al., 2013) which requires depth input, limiting it
to indoor scenes. The performance of the uncertainty model is shown with 100 Monte Carlo
dropout samples. In addition to the qualitative improvement of obtaining an uncertainty
metric, we also observe a consistent improvement in relocalisation accuracy of 10-15% over
Dense PoseNet.

uncertainty. However the proportionality gradient between error and uncertainty varies
significantly between scenes.

Figure 3.15 shows that metric error and uncertainty values are correlated between rota-
tional and translational values. This supports the assumptions in our method of generating an
overall uncertainty estimate as an ‘average’ of these normalized values. We observe relocali-
sation error and uncertainty are strongly correlated between both position and orientation.

3.6.7 Uncertainty as a Landmark Detector

We show that the uncertainty metric can also be used to determine if the image is from the
scene or landmark that the pose regressor was trained on. For a given scene in a dataset
we test each image on all of the models. We then compute the uncertainty metric using
the normalization method proposed in section 3.6.3. The image should have the lowest
uncertainty value with the model which was trained on the scene that the image was taken
from.

In figure 3.20 we present a confusion matrix showing this result for the Cambridge
Landmarks and 7 Scenes datasets. We exclude the Street scene as it contains many of the
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Fig. 3.18 localisation accuracy for both position and orientation as a cumulative his-
togram of errors for the entire test set. This shows that our probabilistic PoseNet performs
consistently better than the non-probabilistic PoseNet for all error thresholds.

landmarks in the other scenes. We show the confusion matrix when using the combined
normalized uncertainty. We observed that combining the rotation and translation metrics
often provides a superior and more robust error metric.

Note that the network has not been trained to classify the landmark it is observing. This
is obtained as a by-product of the probabilistic architecture. If the convolutional net was
trained to classify landmarks we are confident that it would perform significantly better. The
purpose of this was to validate that the uncertainty measurement can reflect whether or not
the network is trained on what it is presented with. The results show that the system can not
only estimate the accuracy of the prediction, but also correctly identify when the landmark is
not present at all.

3.6.8 What Makes the Model Uncertain About a Pose?

An initial hypothesis may be that test images which are far from training examples give very
uncertain results, because they are more unknown to the network. To study this we plot, for
each test image in a scene, the uncertainty against the Euclidean distance between the test
image and the nearest training image. This plot shows a very slight increasing trend but is
not sufficiently clear to draw any conclusions. However Euclidean distance to the nearest
training image is not a comprehensive measure of similarity between images. It excludes
other variables such as orientation, weather, pedestrian activity and lighting.
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Fig. 3.19 Plot of translational and rotational errors against their respective estimated
uncertainty for test images in the King’s College scene and for all scenes. These plots show
that the uncertainty is very strongly correlated with error and provides a good estimate of
metric relocalisation error. It also shows that the scale of uncertainty values that each model
learns varies significantly, suggesting they should be normalized for each model, as proposed
in section 3.6.3.
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King's College St Mary's Old Hospital Shop Facade
King's College 75.22 5.54 11.66 7.58

St Mary's 2.45 79.43 5.28 12.83
Old Hospital 11.54 0 80.22 8.24
Shop Facade 4.85 4.85 14.56 75.73

(a) Confusion matrix for Cambridge Landmarks dataset

Chess Fire Heads Office Pumpkin Kitchen Stairs
Chess 57.5 10.5 1.6 9.4 7.2 6.9 6.9

Fire 0.4 59.8 6.8 1.6 1.7 9.9 19.8
Heads 5.9 2.8 52.4 14 3.7 7.8 13.4
Office 12.2 11.4 6.2 42.4 6.6 14.9 6.3

Pumpkin 13.1 11.2 6.6 2.1 45.6 5.4 16
Red Kitchen 7.9 5.2 9.3 5.1 6.5 57.9 8.1

Stairs 11.1 4.5 2.8 11.1 18.4 1.9 50.2

(b) Confusion matrix for 7 Scenes dataset

Fig. 3.20 Scene recognition confusion matrices. For each dataset (row) we computed the
Z-score for both rotation and translation uncertainties. Dataset images were classified to
the model (column) with the lowest uncertainty. Note that the Street scene is excluded
as it contains many of the other landmarks in Cambridge Landmarks. This shows that
the uncertainty metric is able to recognize correctly the landmark that it was trained to
relocalise from. The network outputs large model uncertainty when it is presented with an
unknown scene. The average scene detection accuracy is approximately 78% for Cambridge
Landmarks. The indoor dataset is a far more challenging problem, as many scenes are very
visually ambiguous. For example the pumpkin scene is the same room as the kitchen, with a
different arrangement. Despite this, our system still performs modestly with 52% accuracy.

PoseNet produces a 2048 dimensional feature vector (see Section 3.4). This feature vector
contains a high dimensional representation of instantiation parameters in the scene, such as
weather, lighting, and object pose. Therefore we use this feature vector as a representation
of the image. To compute similarity between two images, we evaluate the pose regressor’s
feature vector for each image and take the Euclidean distance between each feature vector.
Therefore we can use this as a measure of similarity between a test image and the dataset’s
training image by finding the distance to the nearest neighbour training image in this feature
space. This is the same measure used to compute the nearest neighbour results in table 3.17.

Figure 3.21 shows a plot of model uncertainty against this distance for all test images
in the Street scene. The strong relationship indicates that the model is more uncertain for
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Fig. 3.21 Uncertainty value for test images in the Street scene, plotted against Euclidean
distance to the nearest neighbour training image feature vector. The feature vector is a
2048 dimensional vector obtained from the final layer in PoseNet before the pose regression.
This shows that having similar training examples lowers model uncertainty in test images.

images which are less similar (in this localisation feature space) to those in the training
dataset.

The points which deviate from this trend, with larger uncertainty values, are typically
the difficult images to localise. Some examples are shown in figure 3.22 These images
have challenges such as heavy vehicle occlusion or strong silhouette lighting which result in
inaccurate and uncertain prediction.

3.6.9 System Efficiency

We now compare the performance of our probabilistic PoseNet to our non-probabilistic
PoseNet introduced in Section 3.4. The probabilistic approach shares all the same benefits
of PoseNet, being scalable as its memory and computational requirements do not scale
with map size or training data. Introducing dropout uncertainty does not require any more
parametrisation and the weight file remains constant at 50 MB. This is still much more
efficient than the gigabytes required for metric relocalisation systems with point features (Li
et al., 2012).

Drawing stochastic samples however comes at an additional time cost. As figure 3.16
shows, the optimal samples to take is approximately 40 as any more samples than this does
not significantly improve performance. When operating on a parallel processor, such as a
GPU, this extra computation is manageable by treating it as a mini-batch of operations. This
is no different to using the densely evaluated network introduced in Section 3.4. For example,
computing pose by averaging 40 Monte Carlo dropout samples in practice takes 50ms while
128 samples takes 95ms. For comparison, a single PoseNet evaluation takes 5ms per image.
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3.7 Summary

Fig. 3.22 Images with the largest uncertainty values and largest localisation errors. All
of these images contain one of the following situations that cause difficult and uncertain
localisation: strong occlusion from vehicles, pedestrians or other objects, motion blur, are
taken from an area at the edge of the scene or are distant from a training example.

3.7 Summary

In this chapter, we investigated the problem of localisation and estimating the camera’s 3-D
position and orientation from a single image. We briefly summarise the main conclusions
within the three main themes of this dissertation.

End-to-end deep learning. We show how to formulate an algorithm for localisation
with an end-to-end deep neural network. We find this approach is more robust than traditional
point-based feature approaches, being able to deal with significant lighting and pose variation.
The algorithm is fast, and as the map is stored within the neural network’s weights, scales
very well with map size. We demonstrate effective relocalisation ability across large scale
street scenes and indoor environments.

Geometry. We have investigated a number of loss functions for learning to regress
position and orientation simultaneously with scene geometry. We present an algorithm for
training PoseNet which does not require any hyper-parameter tuning. We achieve this by
training using the reprojection error of 3-D scene geometry. We demonstrate PoseNet’s
efficacy on three large scale datasets. We observe a large improvement of results compared
to the original loss proposed by PoseNet, narrowing the performance gap to traditional
point-feature approaches.

Uncertainty. We show how to successfully apply an uncertainty framework to the
convolutional neural network pose regressor, PoseNet. This improves relocalisation accuracy
by 10− 15%. We do this by averaging Monte Carlo dropout samples from the posterior
Bernoulli distribution of the Bayesian convolutional network’s weights. We show that the
trace of the sample’s covariance matrix provides an appropriate model-uncertainty estimate.
We show that this uncertainty estimate accurately reflects the metric relocalisation error and
can be used to detect the presence of a previously observed landmark. We present evidence
that shows that the model is more uncertain about images which are dissimilar to the training
examples, with application for exploratory loop closure detection.
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Chapter 4

Stereo Vision

4.1 Introduction

Accurately estimating three dimensional geometry from stereo imagery is a core problem
for many computer vision applications, including autonomous vehicles and UAVs (Achtelik
et al., 2009). Stereo algorithms typically estimate the difference in the horizontal position
of an object between a rectified pair of stereo images. This is known as disparity, which is
inversely proportional to the scene depth at the corresponding pixel location. In this chapter
we are specifically interested in computing the disparity of each pixel between a rectified
stereo pair of images.

To achieve this, the core task of a stereo algorithm is computing the correspondence of
each pixel between two images. This is very challenging to achieve robustly in real-world
scenarios. Current state-of-the-art stereo algorithms often have difficulty with textureless
areas, reflective surfaces, thin structures and repetitive patterns. Many stereo algorithms
aim to mitigate these failures with pooling or gradient based regularization (Geiger et al.,
2010; Hirschmuller, 2005). However, this often requires a compromise between smoothing
surfaces and detecting detailed structures.

In contrast, deep learning models have been successful in learning powerful representa-
tions directly from the raw data in object classification (Krizhevsky et al., 2012), detection
(Girshick et al., 2014) and semantic segmentation (Badrinarayanan et al., 2017; Long et al.,
2015). These examples demonstrate that deep convolutional networks are very effective
for understanding semantics. They excel at classification tasks when supervised with large

In this Chapter, Section 4.2, Section 4.3 and Section 4.4 was collaborative work with Hayk Martirosyan,
Saumitro Dasgupta, Peter Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry and was published in
(Kendall et al., 2017c)
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Fig. 4.1 Our end-to-end deep stereo regression architecture, GC-Net (Geometry and
Context Network).

training datasets. We observe that a number of these challenging problems for stereo algo-
rithms would benefit from knowledge of global semantic context, rather than relying solely
on local geometry. For example, given a reflective surface of a vehicle’s wind-shield, a stereo
algorithm is likely to be erroneous if it relies solely on the local appearance of the reflective
surface to compute geometry. Rather, it would be advantageous to understand the semantic
context of this surface (that it belongs to a vehicle) to infer the local geometry. In this chapter
we show how to learn a stereo regression model end-to-end, with the capacity to understand
wider contextual information.

Stereo algorithms which leverage deep learning representations have so far been largely
focused on using them to generate unary terms (Luo et al., 2016; Zbontar and LeCun, 2015).
Applying cost matching on the deep unary representations performs poorly when estimating
pixel disparities (Luo et al., 2016; Zbontar and LeCun, 2015). Traditional regularization
and post processing steps are still used, such as semi global block matching and left-right
consistency checks (Hirschmuller, 2005). These regularization steps are severely limited
because they are hand-engineered, shallow functions, which are still susceptible to the
aforementioned problems.

This chapter asks the question, can we formulate the entire stereo vision problem with
deep learning using our understanding of stereo geometry? The main contribution of this
chapter is an end-to-end deep learning method to estimate per-pixel disparity from a single
rectified image pair. Our architecture is illustrated in Figure 4.1. It explicitly reasons about
geometry by forming a cost volume, while also reasoning about semantics using a deep
convolutional network formulation. We achieve this with two key ideas:

• We learn to incorporate context directly from the data, employing 3-D convolutions to
learn to filter the cost volume over height×width×disparity dimensions,

• We use a soft argmin function, which is fully differentiable, and allows us to regress
sub-pixel disparity values from the disparity cost volume.
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4.2 Literature Review

Section 4.3 introduces this model. In Section 4.4 we evaluate our model on the synthetic
Scene Flow dataset (Mayer et al., 2016) and set a new state-of-the-art benchmark on the
KITTI 2012 and 2015 datasets (Geiger et al., 2012; Menze and Geiger, 2015). Finally, in
Section 4.4.4 we present evidence that our model has the capacity to learn semantic reasoning
and contextual information.

In the remainder of this chapter, we demonstrate how to jointly learn depth from labelled
and unlabelled data. We get the best of both worlds, leveraging labels to learn accurate
disparities and large cohorts of unlabelled data for robustness. We do this by approaching the
problem with a thorough probabilistic treatment. We make the observation that unsupervised
learning can provide a strong signal for learning in many regions that supervised models
find difficult – such as occlusion boundaries and thin structures, where there is a strong
photometric discontinuity. However, regions which suffer from the aperture problem, such as
sky and other flat, texture-less regions, are easier to solve with supervised learning. We show
how to use recent advances in probabilistic deep learning to leverage the most informative
signal from each training mode, and attenuate more uncertain areas.

To achieve this, we model uncertainty in stereo vision using probabilistic deep learning,
which provides a framework for understanding uncertainty with deep learning models (Gal,
2016; Kendall and Gal, 2017) and was introduced in Chapter 2. In Section 4.5.1 we show how
to form an architecture which learns to regress stereo disparities and heteroscedastic (data
dependent) uncertainty (Der Kiureghian and Ditlevsen, 2009) from a rectified stereo pair of
images. Our method does not require labels for uncertainty, rather it is learned implicitly
from the data.

In summary, the main contributions of this chapter are:

1. forming an end-to-end model for stereo disparity regression which explicitly uses
geometry,

2. advancing state-of-the-art on the Kitti stereo benchmark (Geiger et al., 2012),

3. demonstrating how to model uncertainty in stereo vision with probabilistic deep
learning,

4. showing how to combine labelled and unlabelled data with semi-supervised learning.

4.2 Literature Review

The problem of computing depth from stereo image pairs has been studied for quite some
time (Barnard and Fischler, 1982). Stereo algorithms typically estimate the difference in
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the horizontal position of an object between a rectified pair of stereo images. This is known
as disparity, which is inversely proportional to the scene depth at the corresponding pixel
location. A survey by Scharstein and Szeliski (Scharstein and Szeliski, 2002) provides a
taxonomy of stereo algorithms as performing some subset of: matching cost computation,
cost support aggregation, disparity computation and optimization, or disparity refinement.
This survey also described the first Middlebury dataset and associated evaluation metrics,
using structured light to provide ground truth. An improved higher resolution Middlebury
dataset was presented in (Scharstein et al., 2014). The KITTI dataset (Geiger et al., 2012;
Menze and Geiger, 2015) is a larger dataset from data collected from a moving vehicle with
LIDAR ground truth. These datasets first motivated improved hand-engineered techniques
for all components of stereo, of which we mention a few notable examples.

The matching cost is a measure of pixel dissimilarity for potentially corresponding
objects across stereo images (Hirschmüller and Scharstein, 2007). The matching cost does
not provide a measure of uncertainty, rather it predicts the relative likelihood between various
disparity solutions. Traditionally, local descriptors based on gradients (Geiger et al., 2010)
or binary patterns, such as CENSUS (Zabih and Woodfill, 1994) or BRIEF (Calonder et al.,
2010; Heise et al., 2015), have been used. More recently, machine learning techniques
have been applied to estimate stereo correspondences; Markov random fields (Zhang and
Seitz, 2007), conditional random fields (Scharstein and Pal, 2007), support vector machines
(Li and Huttenlocher, 2008) and deep learning (Zagoruyko and Komodakis, 2015; Zbontar
and LeCun, 2015) have all been shown to be increasingly effective. Recent deep learning
advances have improved performance by matching image patches using a Siamese network
(Luo et al., 2016), multi-scale embeddings (Chen et al., 2015b).

Local matching costs often require post processing or regularization, which attempts
to incorporate knowledge of the global context (Bleyer et al., 2011; Klaus et al., 2006;
Kolmogorov and Zabih, 2001). A common technique is Semi-Global Matching (SGM)
(Hirschmüller, 2008) which uses dynamic programming to optimize the path-wise form of
the energy function in many directions.

In addition to providing a basis for comparing stereo algorithms, the ground truth depth
data from these datasets provides the opportunity to use machine learning for improving
stereo algorithms in a variety of ways. Zhang and Seitz (Zhang and Seitz, 2007) alternately
optimized disparity and Markov random field regularization parameters. Scharstein and
Pal (Scharstein and Pal, 2007) learn conditional random field (CRF) parameters, and Li
and Huttenlocher (Li and Huttenlocher, 2008) train a non-parametric CRF model using
the structured support vector machine. Learning can also be employed to estimate the
confidence of a traditional stereo algorithm, such as the random forest approach of Haeusler
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et al. (Haeusler et al., 2013). Such confidence measures can improve the result of SGM as
shown by Park and Yoon (Park and Yoon, 2015).

Deep convolutional neural networks can be trained to match image patches (Zagoruyko
and Komodakis, 2015). A deep network trained to match 9×9 image patches, followed by
non-learned cost aggregation and regularization, was shown by Žbontar and LeCun (Zbontar
and LeCun, 2015, 2016) to produce then state-of-the-art results. Luo et al. presented a
notably faster network for computing local matching costs as a multi-label classification of
disparities using a Siamese network (Luo et al., 2016). A multi-scale embedding model from
Chen et al. (Chen et al., 2015b) also provided good local matching scores. Also noteworthy is
the DeepStereo work of Flynn et al. (Flynn et al., 2016), which learns a cost volume combined
with a separate conditional colour model to predict novel viewpoints in a multi-view stereo
setting.

Mayer et al. created a large synthetic dataset to train a network for disparity estimation
(as well as optical flow) (Mayer et al., 2016), improving the state-of-the-art. As one variant of
the network, a 1-D correlation was proposed along the disparity line which is a multiplicative
approximation to the stereo cost volume. In contrast, our work does not collapse the feature
dimension when computing the cost volume and uses 3-D convolutions to incorporate context.

Though the focus of this work is on binocular stereo, it is worth noting that the represen-
tational power of deep convolutional networks also enables depth estimation from a single
monocular image (Eigen et al., 2014). Deep learning is combined with a continuous CRF
by Liu et al. (Liu et al., 2015b). Instead of supervising training with labelled ground truth,
unlabelled stereo pairs can be used to train a monocular model (Garg et al., 2016).

In our work, we apply no post-processing or regularization. We explicitly reason about
geometry by forming a fully differentiable cost volume and incorporate context from the
data with a 3-D convolutional architecture. We don’t learn a probability distribution, cost
function, or classification result. Rather, our network is able to directly regress a sub-pixel
estimate of disparity from a stereo image pair.

4.3 Learning End-to-End Disparity Regression

Rather than design any step of the stereo algorithm by hand, we would like to learn an
end-to-end mapping from an image pair to disparity maps using deep learning. We hope to
learn a more optimal function directly from the data. Additionally, this approach promises
to reduce much of the engineering design complexity. However, our intention is not to
naively construct a machine learning architecture as a black box to model stereo. Instead,
we advocate the use of the insights from many decades of multi-view geometry research
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(Hartley and Zisserman, 2000) to guide architectural design. Therefore, we form our model
by developing differentiable layers representing each major component in traditional stereo
pipelines (Scharstein and Szeliski, 2002). This allows us to learn the entire model end-to-end
while leveraging our geometric knowledge of the stereo problem.

Our architecture, GC-Net (Geometry and Context Network) is illustrated in Figure 4.1,
with a more detailed layer-by-layer definition in Table 4.1. In the remainder of this section
we discuss each component in detail. Later, in Section 4.4.1, we present quantitative results
justifying our design decisions.

4.3.1 Unary Features

First we learn a deep representation to use to compute the stereo matching cost. Rather
than compute the stereo matching cost using raw pixel intensities, it is common to use a
feature representation. The motivation is to compare a descriptor which is more robust to the
ambiguities in photometric appearance and can incorporate local context.

In our model we learn a deep representation through a number of 2-D convolutional
operations. Each convolutional layer is followed by a batch normalization layer and a rectified
linear non-linearity. To reduce computational demand, we initially apply a 5×5 convolutional
filter with stride of two to sub-sample the input. Following this layer, we append eight
residual blocks (He et al., 2016) which each consist of two 3×3 convolutional filters in series.
Our final model architecture is shown in Table 4.1. We form the unary features by passing
both left and right stereo images through these layers. We share the parameters between the
left and right towers to more effectively learn corresponding features.

4.3.2 Cost Volume

We use the deep unary features to compute the stereo matching cost by forming a cost volume.
While a naive approach might simply concatenate the left and right feature maps, forming a
cost volume allows us to constrain the model in a way which preserves our knowledge of the
geometry of stereo vision. For each stereo image, we form a cost volume of dimensionality
height×width×(max disparity + 1)×feature size. We achieve this by concatenating each
unary feature with their corresponding unary from the opposite stereo image across each
disparity level, and packing these into the 4D volume. This is shown in Figure 4.2 for a
single disparity line.

Crucially, we retain the feature dimension through this operation, unlike previous work
which uses a dot product style operation which decimates the feature dimension (Luo et al.,
2016). This allows us to learn to incorporate context which can operate over feature unaries
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Layer Description Output Tensor Dim.
Input image H×W×C

Unary features (section 4.3.1)
1 5×5 conv, 32 features, stride 2 1⁄2H×1⁄2W×F
2 3×3 conv, 32 features 1⁄2H×1⁄2W×F
3 3×3 conv, 32 features 1⁄2H×1⁄2W×F

add layer 1 and 3 features (residual connection) 1⁄2H×1⁄2W×F
4-17 (repeat layers 2,3 and residual connection) × 7 1⁄2H×1⁄2W×F
18 3×3 conv, 32 features, (no ReLu or BN) 1⁄2H×1⁄2W×F

Cost volume (section 4.3.2)
Cost Volume 1⁄2D×1⁄2H×1⁄2W×2F

Learning regularization (section 4.3.3)
19 3-D conv, 3×3×3, 32 features 1⁄2D×1⁄2H×1⁄2W×F
20 3-D conv, 3×3×3, 32 features 1⁄2D×1⁄2H×1⁄2W×F
21 From Cost Volume: 3-D conv, 3×3×3, 64 features, stride 2 1⁄4D×1⁄4H×1⁄4W×2F
22 3-D conv, 3×3×3, 64 features 1⁄4D×1⁄4H×1⁄4W×2F
23 3-D conv, 3×3×3, 64 features 1⁄4D×1⁄4H×1⁄4W×2F
24 From 21: 3-D conv, 3×3×3, 64 features, stride 2 1⁄8D×1⁄8H×1⁄8W×2F
25 3-D conv, 3×3×3, 64 features 1⁄8D×1⁄8H×1⁄8W×2F
26 3-D conv, 3×3×3, 64 features 1⁄8D×1⁄8H×1⁄8W×2F
27 From 24: 3-D conv, 3×3×3, 64 features, stride 2 1⁄16D×1⁄16H×1⁄16W×2F
28 3-D conv, 3×3×3, 64 features 1⁄16D×1⁄16H×1⁄16W×2F
29 3-D conv, 3×3×3, 64 features 1⁄16D×1⁄16H×1⁄16W×2F
30 From 27: 3-D conv, 3×3×3, 128 features, stride 2 1⁄32D×1⁄32H×1⁄32W×4F
31 3-D conv, 3×3×3, 128 features 1⁄32D×1⁄32H×1⁄32W×4F
32 3-D conv, 3×3×3, 128 features 1⁄32D×1⁄32H×1⁄32W×4F
33 3×3×3, 3-D transposed conv, 64 features, stride 2 1⁄16D×1⁄16H×1⁄16W×2F

add layer 33 and 29 features (residual connection) 1⁄16D×1⁄16H×1⁄16W×2F
34 3×3×3, 3-D transposed conv, 64 features, stride 2 1⁄8D×1⁄8H×1⁄8W×2F

add layer 34 and 26 features (residual connection) 1⁄8D×1⁄8H×1⁄8W×2F
35 3×3×3, 3-D transposed conv, 64 features, stride 2 1⁄4D×1⁄4H×1⁄4W×2F

add layer 35 and 23 features (residual connection) 1⁄4D×1⁄4H×1⁄4W×2F
36 3×3×3, 3-D transposed conv, 32 features, stride 2 1⁄2D×1⁄2H×1⁄2W×F

add layer 36 and 20 features (residual connection) 1⁄2D×1⁄2H×1⁄2W×F
37 3×3×3, 3-D trans conv, 1 feature (no ReLu or BN) D×H×W×1

Soft argmin (section 4.3.4)
Soft argmin H×W

Table 4.1 Summary of our end-to-end deep stereo regression architecture, GC-Net.
Each 2-D or 3-D convolutional layer represents a block of convolution, batch normalization
and ReLU non-linearity (unless otherwise specified).
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Fig. 4.2 An explaination of the GC-Net architecture along a single disparity line. This
figure shows the transformations each layer imposes on the features.

(Section 4.3.3). We find that forming a cost volume with concatenated features improves
performance over subtracting features or using a distance metric. Our intuition is that
by maintaining the feature unaries, the network has the opportunity to learn an absolute
representation (because it is not a distance metric) and carry this through to the cost volume.
This gives the architecture the capacity to learn semantics. In contrast, using a distance
metric restricts the network to only learning relative representations between features, and
cannot carry absolute feature representations through to cost volume.

4.3.3 Learning Context

Given this disparity cost volume, we would now like to learn a regularization function
which is able to take into account context in this volume and refine our disparity estimate.
The matching costs between unaries can never be perfect, even when using a deep feature
representation. For example, in regions of uniform pixel intensity (for example, sky) the cost
curve will be flat for any features based on a fixed, local context. We find that regions like
this can cause multi modal matching cost curves across the disparity dimension. Therefore
we wish to learn to regularize and improve this volume.
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We propose to use three-dimensional convolutional operations to filter and refine this
representation. 3-D convolutions are able to learn feature representations from the height,
width and disparity dimensions. Because we compute the cost curve for each unary feature,
we can learn convolutional filters from this representation. In Section 4.4.1 we show the
importance of these 3-D filters for learning context and significantly improving stereo
performance.

The difficulty with 3-D convolutions is that the additional dimension is a burden on
the computational time for both training and inference. Deep encoder-decoder tasks which
are designed for dense prediction tasks get around their computational burden by encoding
sub-sampled feature maps, followed by up-sampling in a decoder (Badrinarayanan et al.,
2017). We extend this idea to three dimensions. By sub-sampling the input with stride two,
we also reduce the 3-D cost volume size by a factor of eight. We form our 3-D regularization
network with four levels of sub-sampling. As the unaries are already sub-sampled by a factor
of two, the features are sub-sampled by a total factor of 32. This allows us to explicitly
leverage context with a wide field of view. We apply two 3×3×3 convolutions in series for
each encoder level. To make dense predictions with the original input resolution, we employ
a 3-D transposed convolution to up-sample the volume in the decoder. The full architecture
is described in Table 4.1.

Sub-sampling is useful to increase each feature’s receptive field while reducing computa-
tion. However, it also reduces spatial accuracy and fine-grained details through the loss of
resolution. For this reason, we add each higher resolution feature map before up-sampling.
These residual layers have the benefit of retaining higher frequency information, while the
up-sampled features provide an attentive feature map with a larger field of view.

Finally, we apply a single 3-D transposed convolution (deconvolution), with stride two
and a single feature output. This layer is necessary to make dense prediction in the original
input dimensions because the feature unaries were sub-sampled by a factor of two. This
results in the final, regularized cost volume with size H×W×D.

4.3.4 Differentiable ArgMin

Typically, stereo algorithms produce a final cost volume from the matching cost unaries.
From this volume, we may estimate disparity by performing an argmin operation over the
cost volume’s disparity dimension. However, this operation has two problems:

• it is discrete and is unable to produce sub-pixel disparity estimates,
• it is not differentiable and therefore unable to be trained using back-propagation.
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(b) Multi-modal distribution
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Fig. 4.3 A graphical depiction of the soft argmin operation (Section 4.3.4) which we
propose in this work. It is able to take a cost curve along each disparity line and output an
estimate of the argmin by summing the product of each disparity’s softmax probability and
its disparity index. (a) demonstrates that this very accurately captures the true argmin when
the curve is uni-modal. (b) demonstrates a failure case when the data is bi-modal with one
peak and one flat region. (c) demonstrates that this failure may be avoided if the network
learns to pre-scale the cost curve, because the softmax probabilities will tend to be more
extreme, producing a uni-modal result.

To overcome these limitations, we define a soft argmin2 which is both fully differentiable and
able to regress a smooth disparity estimate. First, we convert the predicted costs, cd (for each
disparity, d) from the cost volume to a probability volume by taking the negative of each
value. We normalize the probability volume across the disparity dimension with the softmax
operation, σ(·). We then take the sum of each disparity, d, weighted by its normalized
probability. A graphical illustration is shown in Figure 4.3 and defined mathematically in
(4.1):

so f t argmin :=
Dmax

∑
d=0

d×σ(−cd) (4.1)

This operation is fully differentiable and allows us to train and regress disparity estimates.
We note that a similar function was first introduced by (Bahdanau et al., 2014) and referred
to as a soft-attention mechanism. Here, we show how to apply it for the stereo regression
problem.

However, compared to the argmin operation, its output is influenced by all values. This
leaves it susceptible to multi-modal distributions, as the output will not take the most likely.

2Note that if we wished for our network to learn probabilities, rather than cost, this function could easily be
adapted to a soft argmax operation.
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Rather, it will estimate a weighted average of all modes. To overcome this limitation, we
rely on the network’s regularization to produce a disparity probability distribution which
is predominantly unimodal. The network can also pre-scale the matching costs to control
the peakiness (sometimes called temperature) of the normalized post-softmax probabilities
(Figure 4.3). We explicitly omit batch normalization from the final convolution layer in the
unary tower to allow the network to learn this from the data.

4.3.5 Loss

We train our entire model end-to-end from a random initialization. We train our model with
supervised learning using ground truth depth data. In the case of using LIDAR to label
ground truth values (e.g. KITTI dataset (Geiger et al., 2012; Menze and Geiger, 2015)) these
labels may be sparse. Therefore, we average our loss over the labelled pixels, N. We train
our model using the absolute error between the ground truth disparity, dn, and the model’s
predicted disparity, d̂n, for pixel n. This supervised regression loss is defined in (4.2):

Loss =
1
N

N

∑
n=1

∥∥dn− d̂n
∥∥

1 (4.2)

In the following section we show that formulating our model as a regression problem allows
us to regress with sub-pixel accuracy and outperform classification approaches. Additionally,
formulating a regression model makes it possible to leverage unsupervised learning losses
based on photometric reprojection error (Garg et al., 2016).

4.4 Experimental Evaluation

In this section we present qualitative and quantitative results on two datasets, Scene Flow
(Mayer et al., 2016) and KITTI (Geiger et al., 2012; Menze and Geiger, 2015). Firstly, in
Section 4.4.1 we experiment with different variants of our model and justify a number of
our design choices using the Scene Flow dataset (Mayer et al., 2016). In Section 4.4.2 we
present results of our approach on the KITTI dataset and set a new state-of-the-art benchmark.
Finally, we measure our model’s capacity to learn context in Section 4.4.4.

For the experiments in this chapter, we implement our architecture using TensorFlow
(Abadi et al., 2016). All models are optimized end-to-end with RMSProp (Tieleman and
Hinton, 2012) and a constant learning rate of 1×10−3. We train with a batch size of 1 using
a 256× 512 randomly located crop from the input images. Before training we normalize
each image such that the pixel intensities range from−1 to 1. We trained the network (from a
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Model > 1 px > 3 px > 5 px MAE (px) RMS (px) Param. Time (ms)
1. Comparison of architectures

Unaries only (omitting all 3-D conv layers 19-36) w Regression Loss 97.9 93.7 89.4 36.6 47.6 0.16M 0.29
Unaries only (omitting all 3-D conv layers 19-36) w Classification Loss 51.9 24.3 21.7 13.1 36.0 0.16M 0.29
Single scale 3-D context (omitting 3-D conv layers 21-36) 34.6 24.2 21.2 7.27 20.4 0.24M 0.84
Hierarchical 3-D context (all 3-D conv layers) 16.9 9.34 7.22 2.51 12.4 3.5M 0.95

2. Comparison of loss functions
GC-Net + Classification loss 19.2 12.2 10.4 5.01 20.3 3.5M 0.95
GC-Net + Soft classification loss (Luo et al., 2016) 20.6 12.3 10.4 5.40 25.1 3.5M 0.95
GC-Net + Regression loss 16.9 9.34 7.22 2.51 12.4 3.5M 0.95
GC-Net (final architecture with regression loss) 16.9 9.34 7.22 2.51 12.4 3.5M 0.95

Table 4.2 Results on the Scene Flow dataset (Mayer et al., 2016) which contains 35,454 training and 4,370 testing images of size
960×540px from an array of synthetic scenes. We compare different architecture variants to justify our design choices. The first
experiment shows the importance of the 3-D convolutional architecture. The second experiment shows the performance gain from
using a regression loss.
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random initialization) on Scene Flow for approximately 150k iterations which takes two days
on a single NVIDIA Titan-X GPU. For the KITTI dataset we fine-tune the models pre-trained
on Scene Flow for a further 50k iterations. For our experiments on Scene Flow we use F=32,
H=540, W=960, D=192 and on the KITTI dataset we use F=32, H=388, W=1240, D=192 for
feature size, image height, image width and maximum disparity, respectively.

4.4.1 Model Design Analysis

In Table 4.2 we present an ablation study to compare a number of different model variants
and justify our design choices. We wish to evaluate the importance of the key ideas in this
section; using a regression loss over a classification loss, and learning 3-D convolutional
filters for cost volume regularization. We use the synthetic Scene Flow dataset (Mayer et al.,
2016) for these experiments, which contains 35,454 training and 4,370 testing images. We
use this dataset for two reasons. Firstly, we know perfect, dense ground truth from the
synthetic scenes which removes any discrepancies due to erroneous labels. Secondly, the
dataset is large enough to train the model without over-fitting. In contrast, the KITTI dataset
only contains 200 training images, making the model is susceptible to over-fitting to this
very small dataset. With tens of thousands of training images we do not have to consider
over-fitting in our evaluation.

The first experiment in Table 4.2 shows that including the 3-D filters performs significantly
better than learning unaries only. We compare our full model (as defined in Table 4.1) to a
model which uses only unary features (omitting all 3-D convolutional layers 19-36) and a
model which omits the hierarchical 3-D convolution (omitting layers 21-36). We observe
that the 3-D filters are able to regularize and smooth the output effectively, while learning to
retain sharpness and accuracy in the output disparity map. We find that the hierarchical 3-D
model outperforms the vanilla 3-D convolutional model by aggregating a much large context,
without significantly increasing computational demand.

The second experiment in Table 4.2 compares our regression loss function to baselines
classifying disparities with hard or soft classification as proposed in (Luo et al., 2016). Hard
classification trains the network to classify disparities in the cost volume as probabilities
using cross entropy loss with a ‘one hot’ encoding. Soft classification (used by (Luo et al.,
2016)) smooths this encoding to learn a Gaussian distribution centred around the correct
disparity value. In Table 4.2 we show our regression approach outperforms both hard and soft
classification. This is especially noticeable for the pixel accuracy metrics and the percentage
of pixels which are within one pixel of the true disparity, because the regression loss allows
the model to predict with sub-pixel accuracy.
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Fig. 4.4 Validation error (percentage of disparities with error less than 1 px) during training
with the Scene Flow dataset. Classification loss trains faster, however using a regression loss
results in better performance.

Figure 4.4 plots validation error during training for each of the networks compared in
this section. We observe that the classification loss converges faster, however the regression
loss performs best overall.

4.4.2 KITTI Benchmark

In Table 4.3 we evaluate the performance of our model on the KITTI 2012 and 2015 stereo
datasets (Geiger et al., 2012; Menze and Geiger, 2015). These consist of challenging and
varied road scene imagery collected from a test vehicle. Ground truth depth maps for
training and evaluation are obtained from LIDAR data. KITTI is a prominent dataset for
benchmarking stereo algorithms. The downside is that it only contains 200 training images,
which handicaps learning algorithms. for this reason, we pre-train our model on the large
synthetic dataset, Scene Flow (Mayer et al., 2016). This helps to prevent our model from over-
fitting the very small KITTI training dataset. We hold out 40 image pairs as our validation
set.

Table 4.3a and 4.3b compare our method, GC-Net (Geometry and Context Network), to
other approaches on the KITTI 2012 and 2015 datasets, respectively3. Our method achieves
state of the art results for both KITTI benchmarks, by a notable margin. We improve on state-
of-the-art by 9% and 22% for KITTI 2015 and 2012 respectively. Our method is also notably

3Full leaderboard: www.cvlibs.net/datasets/kitti/
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(a) KITTI 2012 test data qualitative results. From left: left stereo input image, disparity prediction,
error map.

(b) KITTI 2015 test data qualitative results. From left: left stereo input image, disparity prediction,
error map.

(c) Scene Flow test set qualitative results. From left: left stereo input image, disparity prediction,
ground truth.

Fig. 4.5 Qualitative results. By learning to incorporate wider context our method is often
able to handle challenging scenarios, such as reflective, thin or texture-less surfaces. By
explicitly learning geometry in a cost volume, our method produces sharp results and can
also handle large occlusions.
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>2 px >3 px >5 px Mean Error Runtime
Non-Occ All Non-Occ All Non-Occ All Non-Occ All (s)

SPS-st (Yamaguchi et al., 2014) 4.98 6.28 3.39 4.41 2.33 3.00 0.9 px 1.0 px 2
Deep Embed (Chen et al., 2015b) 5.05 6.47 3.10 4.24 1.92 2.68 0.9 px 1.1 px 3
Content-CNN (Luo et al., 2016) 4.98 6.51 3.07 4.29 2.03 2.82 0.8 px 1.0 px 0.7
MC-CNN (Zbontar and LeCun, 2016) 3.90 5.45 2.43 3.63 1.64 2.39 0.7 px 0.9 px 67
PBCP (Seki and Pollefeys, 2016) 3.62 5.01 2.36 3.45 1.62 2.32 0.7 px 0.9 px 68
Displets v2 (Guney and Geiger, 2015) 3.43 4.46 2.37 3.09 1.72 2.17 0.7 px 0.8 px 265
GC-Net (this work) 2.71 3.46 1.77 2.30 1.12 1.46 0.6 px 0.7 px 0.9

(a) KITTI 2012 test set results (Geiger et al., 2012). This benchmark contains 194 train and 195 test
gray-scale image pairs.

All Pixels Non-Occluded Pixels Runtime
D1-bg D1-fg D1-all D1-bg D1-fg D1-all (s)

MBM (Einecke and Eggert, 2015) 4.69 13.05 6.08 4.33 12.12 5.61 0.13
ELAS (Geiger et al., 2010) 7.86 19.04 9.72 6.88 17.73 8.67 0.3
Content-CNN (Luo et al., 2016) 3.73 8.58 4.54 3.32 7.44 4.00 1.0
DispNetC (Mayer et al., 2016) 4.32 4.41 4.34 4.11 3.72 4.05 0.06
MC-CNN (Zbontar and LeCun, 2016) 2.89 8.88 3.89 2.48 7.64 3.33 67
PBCP (Seki and Pollefeys, 2016) 2.58 8.74 3.61 2.27 7.71 3.17 68
Displets v2 (Guney and Geiger, 2015) 3.00 5.56 3.43 2.73 4.95 3.09 265
GC-Net (this work) 2.21 6.16 2.87 2.02 5.58 2.61 0.9

(b) KITTI 2015 test set results (Menze and Geiger, 2015). This benchmark contains 200 training
and 200 test color image pairs. The qualifier ‘bg’ refers to background pixels which contain static
elements, ‘fg’ refers to dynamic object pixels, while ‘all’ is all pixels (fg+bg). The results show
the percentage of pixels which have greater than three pixels or 5% disparity error from all 200 test
images.

Table 4.3 Comparison to other stereo methods on the test set of KITTI 2012 and 2015
benchmarks (Geiger et al., 2012; Menze and Geiger, 2015). Our method sets a new state-of-
the-art on these two competitive benchmarks, out performing all other approaches.

faster than most competing approaches which often require expensive post-processing. In
Figure 4.5 we show qualitative results of our method on KITTI 2012, KITTI 2015 and Scene
Flow.

Our approach outperforms previous deep learning patch based methods (Luo et al., 2016;
Zbontar and LeCun, 2015) which produce noisy unary potentials and are unable to predict
with sub-pixel accuracy. For this reason, these algorithms do not use end-to-end learning and
typically post-process the unary output with SGM regularization (Einecke and Eggert, 2015)
to produce the final disparity maps.

The closest method to our architecture is DispNetC (Mayer et al., 2016), which is an
end-to-end regression network pre-trained on SceneFlow. However, our method outperforms
this architecture by a notable margin for all test pixels. DispNetC uses a 1-D correlation
layer along the disparity line as an approximation to the stereo cost volume. In contrast, our

128



4.5 Uncertainty in Stereo Vision

architecture more explicitly leverages geometry by formulating a full cost volume by using
3-D convolutions and a soft argmin layer, resulting in an improvement in performance.

4.4.3 Cross Dataset Generalization

In Table 4.4 we investigate our model’s ability to generalize across unseen datasets. We
observe that our model is able to perform amicably on KITTI test data, even when only
trained on Scene Flow – a dissimilar synthetic dataset.

Train data Test data >3 px Mean Error
Scene Flow KITTI 2015 Val 18.6 2.23
KITTI 2015 Train KITTI 2015 Val 1.50 0.59

Table 4.4 Cross dataset performance. These results show that our method is able to generalize
reasonably well across unseen datasets.

4.4.4 Model Saliency

In this section we present evidence which shows our model can reason about local geometry
using wider contextual information. In Figure 4.6 we show some examples of the model’s
saliency with respect to a predicted pixel’s disparity. Saliency maps (Simonyan et al., 2013)
shows the sensitivity of the output with respect to each input pixel. We use the method from
(Zeiler and Fergus, 2014) which plots the predicted disparity as a function of systematically
occluding the input images. We offset the occlusion in each stereo image by the point’s
disparity.

These results show that the disparity prediction for a given point is dependent on a wide
contextual field of view. For example, the disparity on the front of the car depends on the
input pixels of the car and the road surface below. This demonstrates that our model is able to
reason about wider context, rather than simply 9×9 local patches like previous deep learning
patch-similarity stereo methods (Luo et al., 2016; Zbontar and LeCun, 2016).

Next, we explore modelling uncertainty in stereo vision and show how to learn to regress
depth with unsupervised learning.

4.5 Uncertainty in Stereo Vision

In this section, we present a method to model uncertainty in stereo vision using probabilistic
deep learning, which provides a framework for understanding uncertainty with deep learning
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(a) Left stereo input image

(b) Predicted disparity map

(c) Saliency map (red = stronger saliency)

(d) What the network sees (input attenuated by saliency)

Fig. 4.6 Saliency map visualization which shows the model’s effective receptive field for
a selected output pixel (indicated by the white cross). This shows that our architecture is
able to learn to regress stereo disparity with a large field of view and significant contextual
knowledge of the scene, beyond the local geometry and appearance. For example, in the
example on the right we observe that the model considers contextual information from the
vehicle and surrounding road surface to estimate disparity.

130



4.5 Uncertainty in Stereo Vision

(a) Left stereo image input. (b) Right stereo image input.

(c) Disparity output. (d) Heteroscedastic uncertainty output.

Fig. 4.7 End-to-end probabilistic deep learning model for stereo disparity regression.
We observe increased uncertainty on occlusion boundaries and difficult surfaces, such as the
red car’s reflective and transparent windows.

models (Chapter 2). In Section 4.5.1 we show how to form an architecture which learns to
regress stereo disparities and heteroscedastic (data dependent) uncertainty (Der Kiureghian
and Ditlevsen, 2009) from a rectified stereo pair of images. Our method does not require
labels for uncertainty, rather it is learned implicitly from the data. Unlike other probabilistic
deep learning approaches (Gal, 2016), our method does not depend on drop-out sampling
and is real-time.

We first review related work in stereo vision which considers uncertainty. Hand-
engineered measures of uncertainty in matching costs are often used in stereo to improve
disparity map prediction (Egnal et al., 2004; Hu and Mordohai, 2012). Most uncertainty
measures are designed to detect occlusions, surface discontinuities and texture-less regions.
Hand designed approaches are common, for example using statistical approaches (Sabater
et al., 2012), measures of distinctiveness (Manduchi and Tomasi, 1999; Yoon and Kweon,
2007) or entropy (Scharstein and Szeliski, 1998). Random forests have also be used to
estimate matching cost confidence (Haeusler et al., 2013; Park and Yoon, 2015). However,
the use of uncertainty in stereo has predominantly been limited to estimating the confidence
of matching costs to assist post-processing and regularization. In this section, we estimate
the uncertainty of the final predicted disparity map.

4.5.1 Modelling Uncertainty in Stereo Vision

In this section we introduce probabilistic deep learning, and show how to model uncertainty
in stereo vision. In Chapter 2, we explained there are two main types of uncertainty that
one can model in Bayesian modelling (Der Kiureghian and Ditlevsen, 2009). Aleatoric
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uncertainty captures noise inherent in the observations. This could be due to sensor noise or
variables the sensor is unable to capture, resulting in uncertainty which cannot be reduced
even if more data were to be collected. On the other hand, epistemic uncertainty accounts
for uncertainty in the model parameters – uncertainty which captures our ignorance about
which model generated our collected data. This uncertainty can be explained away given
enough data, and is often referred to as model uncertainty. Aleatoric uncertainty can further
be categorized into homoscedastic uncertainty, uncertainty which stays constant for different
inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on the inputs to
the model, with some inputs potentially having more noisy outputs than others.

Chapter 2 makes the observation that heteroscedastic uncertainty is especially important
for computer vision applications. This is because epistemic uncertainty is often explained
away by the availability of large datasets or unsupervised learning (Section 4.6). However,
heteroscedastic uncertainty, which is uncertainty which is inherent to the data, is important to
understand. For stereo vision, one can imagine the types of appearances which should have
large heteroscedastic uncertainty, such as reflective surfaces, transparent objects, texture-less
areas and over exposed image regions.

Importantly, many applications of stereo vision require algorithms to run in real-time.
One of the attractive properties of modelling heteroscedastic uncertainty is that we can
formulate probabilistic deep learning models which run in real-time (Kendall and Gal, 2017).
In contrast, epistemic uncertainty is often intractable without sampling (Gal, 2016), which
drastically increases the computational requirements of the model.

4.5.2 Learning Heteroscedastic Uncertainty with Deep Learning

In this section, we describe how to modify the GC-Net model (Section 4.3) into a probabilistic
deep learning architecture to estimate heteroscedastic uncertainty in addition to disparity.

Homoscedastic regression (introduced in Chapter 2) assumes constant observation noise,
σ , for all input data. Heteroscedastic regression, on the other hand, assumes that observation
noise can vary with input data (Le et al., 2005; Nix and Weigend, 1994). Heteroscedastic
models can be useful for stereo vision because parts of the observation space might have
higher noise levels than others, such as reflective or textureless regions. Heteroscedastic
uncertainty can be learned as a function of the data (as described in Chapter 2). Therefore,
variational inference is not performed over the weights, but instead we perform maximum a
posteriori inference – finding a single value for the model parameters. This approach does
not allow us to capture epistemic model uncertainty, but has the advantage of being real-time
and does not require Monte Carlo sampling.
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To train a heteroscedastic neural network, we need to infer the posterior distribution by
learning a function, f , which maps a pair of stereo input images, IL and IR, to a disparity
estimate, d̂, and a measure of heteroscedastic uncertainty given by variance, σ̂2.

[d̂, σ̂2] = f (IL, IR) (4.3)

The GC-Net model is designed to output disparity estimates, d̂, by forming a cost
volume of H×W×D×1 dimensions, representing a cost for each disparity and pixel location.
To adapt the architecture to regress an uncertainty measurement, σ̂2, we modify the final
3-D convolutional layer to regress a cost volume of H×W×D×2 dimensions. The final
dimension’s first value still represents the cost, with the second value representing uncertainty.
To form the final output, the first values are put through a soft argmin layer across the disparity
dimension (see Section 4.3.4 for a description) to form the disparity estimates, d̂. We average
the second values across the disparity dimension to form uncertainty estimates, σ̂2. Both
these outputs are of size H×W.

In the following section we explain the loss function we use to learn to estimate disparity
and heteroscedastic uncertainty. We use the losses derived in Section 2.4.3. We fix a Gaussian
likelihood to model our heteroscedastic uncertainty. This induces a minimization objective
given labelled output points, d:

Lheteroscedastic =
1

2N ∑
i
||di− d̂i||σ̂−2

i +
1
2

log σ̂
2
i (4.4)

where N is the number of output pixels d̂i corresponding to input image I, indexed by i. σ̂2

is the probabilistic neural network output for the predicted variance.
This loss consists of two components; the residual regression and an uncertainty regular-

ization term. We do not need ‘uncertainty labels’ to learn uncertainty. Rather, we only need
to supervise the learning to predict disparity. We learn the variance, σ̂2, implicitly from the
loss function. The second regularization term prevents the network from predicting infinite
uncertainty (and therefore zero loss) for all data points.

In practice, we train the network to predict the log variance, ŝi := log σ̂2
i :

Lheteroscedastic =
1

2N ∑
i
||di− d̂i||exp(−ŝi)+

1
2

ŝi. (4.5)

This is because it is more stable than regressing the variance, σ̂2, as the loss avoids a potential
division by zero. The exponential mapping also allows us to regress unconstrained scalar
values, where exp(−ŝi) is resolved to the positive domain giving valid values for variance.
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In Table 4.5 and Table 4.6 we show that modelling heteroscedastic uncertainty improves
performance on the SceneFlow and KITTI datasets (experimental details are described in
Section 4.7). We observe that allowing the network to predict uncertainty allows it effectively
to temper the residual loss by exp(−ŝi), which depends on the data. This acts similarly to an
intelligent robust regression function. It allows the network to adapt the residual’s weighting,
and even allows the network to learn to attenuate the effect from erroneous labels. This
makes the model more robust to noisy data – inputs for which the model learned to predict
high uncertainty for will have a smaller effect on the loss.

The model is discouraged from predicting high uncertainty for all points – in effect
ignoring the data – through the log σ̂2 term. Large uncertainty increases the contribution of
this term, and in turn penalizes the model. The model is also discouraged from predicting very
low uncertainty for points with high residual error, as low σ̂2 will exaggerate the contribution
of the residual and will penalize the model.

4.6 Unsupervised Learning

Stereo vision is a critical component for the success of many animal and robotic vision
systems. However, there are significant challenges to develop robust stereo algorithms which
can be trusted in the wild. Today, the best performing stereo methods are based on end-to-end
deep learning (Kendall et al., 2017c; Luo et al., 2016; Mayer et al., 2016; Zbontar and LeCun,
2016). These methods are, however, very data-hungry, requiring large datasets to achieve
top performance (Mayer et al., 2016). In the real world, getting access to large quantities
of high quality labelled depth data is extremely challenging. For example, one of the most
prominent stereo datasets, KITTI (Geiger et al., 2012), only contains a few hundred labelled
training images. Getting labelled data is challenging because structured light sensors only
work indoors and LIDAR sensors are expensive and produce sparse labels. Large synthetic
datasets have been proposed (Mayer et al., 2016) however these do not always transfer to
real world applications.

In the previous section we formulated a model to learn stereo disparities, with uncertain-
ties, from labelled training data. In this section we show how to formulate stereo regression
as an unsupervised learning problem using deep learning.

Recently, Garg et al. (Garg et al., 2016) showed how to learn monocular depth without
labelled depth data by using photometric reprojection error. Their method was able to train
on 10,000′s of unlabelled KITTI images, much more than the 200 images with ground truth
labels. This work has catalysed many of the recent advances in geometry with deep learning.
For example, in monocular depth regression (Garg et al., 2016; Godard et al., 2017), optical
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flow (Jason et al., 2016; Ren et al., 2017), localisation (Kendall and Cipolla, 2017) and
ego-motion (Zhou et al., 2017). This demonstrates that photometric reprojection loss has
emerged as the dominant technique for learning geometry with unsupervised learning.

However, unsupervised learning methods do not perform as well as supervised regression
(Garg et al., 2016; Kendall and Gal, 2017). This is because unsupervised learning suffers from
the aperture problem – where correspondence is ambiguous due to lack of context (Hartley
and Zisserman, 2000). For example in stereo vision, it is impossible to uniquely determine
correspondences between featureless regions like blank walls or sky without considering the
wider context (Hirschmüller and Scharstein, 2007). Methods which learn from photometric
reprojection error typically enforce a smoothing prior which results in smooth prediction
across these regions with no training signal (Garg et al., 2016; Godard et al., 2017; Zhou et al.,
2017). However this also results in equally blurred regions where there is good structure and
training signal in the data. For this reason, naively combining supervised depth regression
and unsupervised learning with reprojection error typically worsens performance.

Unsupervised learning for monocular depth prediction using deep learning was first
demonstrated by Garg et al (Garg et al., 2016). They showed how unlabelled stereo pairs can
be used to train a monocular depth estimation model. In this work, we believe we are the
first to demonstrate unsupervised deep learning for stereo vision. One of the reasons why
this is now possible is because of new models which can be trained end-to-end to regress
stereo disparity (Kendall et al., 2017c; Mayer et al., 2016). Previous deep learning models
learned to classify disparities with a probability vector (Luo et al., 2016; Zbontar and LeCun,
2016). This representation classifies the output in discrete disparity steps making it is less
suitable for unsupervised learning.

Unlike other unsupervised approaches to learning depth (Garg et al., 2016), we show that
our probabilistic model does not need any smoothing terms in the loss. This is because the
probabilistic regression loss is able to learn to attenuate noisy data points which previously
would have required the smoothing regularization term during training. This results in a
sharper depth prediction image which is able to capture thinner structures. Additionally, we
explore the use of combining unsupervised and supervised learning as a semi-supervised loss
when sparse data labels are available. We demonstrate an improvement in disparity accuracy
over non-probabilistic deep learning baselines.

Using the end-to-end stereo regression model described in Section 4.3, we formulate
an unsupervised regression loss. We can use the model’s disparity estimate to align the
left image, IL, with the right stereo image, IR. If the predicted disparity is equal to the true
disparity then the corresponding pixel locations in the left and right stereo image should have
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the same intensity. This loss is known as the photometric reprojection error (Hartley and
Zisserman, 2000).

More formally, we obtain this loss by resampling the right stereo image, IR, with esti-
mated disparities, d̂. Using the sampling method proposed by spatial transformer networks
(Jaderberg et al., 2015), this entire process is differentiable and able to be trained using back
propagation. The photometric reprojection loss is given by:

Lphotometric =
1
N ∑

u,v

∥∥IL(u,v)− IR(u− d̂u,v,v)
∥∥

1 (4.6)

where I(u,v) represents the pixel intensity of image I and d̂u,v represents the estimated
disparity, at pixel coordinate (u,v).

However, this loss alone is noisy. The photometric reprojection error function is non-
informative in homogeneous regions of the scene (Hartley and Zisserman, 2000) – referred to
as the aperture problem. For example, multiple disparities can generate equally good loss for
repetitive or texture-less surfaces. For this reason, a prior is often applied to the loss function,
typically a smoothing function, to overcome the aperture problem. Previous literature (Garg
et al., 2016) uses some form of the total variation (TV) loss (Rudin et al., 1992):

Lsmooth =
1
N ∑

u,v

∥∥∇d̂u,v
∥∥

1 (4.7)

Combining this regularization loss with the photometric reprojection loss, yields the approach
used by Garg et al. (Garg et al., 2016) for unsupervised monocular depth regression:

Lunsupervised = Lphotometric + γLsmooth (4.8)

with weight λ = 0.01. While this TV-regularized loss does indeed alleviate the aperture
problem, and converge to a reasonable solution, it does over-smooth the output. In the
monocular models, the predicted depth maps in the unsupervised case are over-smoothed
and lose edge detail (Garg et al., 2016), compared to supervised regression models (Eigen
et al., 2014). Figure 4.8c shows a similar result with stereo.

4.6.1 Attenuating the Loss with Heteroscedastic
Uncertainty

In this section, we demonstrate that modelling heteroscedastic uncertainty can provide another
solution to the aperture problem. Ideally, we would like to be able to learn to attenuate the
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photometric reprojection loss in areas of the image which are non-informative and suffer
from the aperture problem. We would like to not regularize areas of the image which provide
a good signal. This is in contrast to the TV-loss approach which smooths all areas equally.

Learning heteroscedastic uncertainty allows us to achieve this. We can interpret the loss
in (4.4) as learned attenuation (Kendall and Gal, 2017). Because the residuals are annealed by
the learned variance, σ̂2, the model has the flexibility to recognize noisy or non-informative
areas of the signal, and attenuate the training loss accordingly.

We can apply the heteroscedastic regression loss in (4.4) to the photometric reprojection
error loss in (4.5) as follows:

Lheteroscedastic unsupervised =
1

2N ∑
u,v

∥∥IL(u,v)− IR(u− d̂u,v,v)
∥∥

1 exp(−ŝu,v) +
1
2

ŝu,v (4.9)

Table 4.5 and Table 4.6 compare the performance of supervised learning against unsu-
pervised learning with our heteroscedastic model on the Scene Flow and KITTI datasets
(experimental details are described in Section 4.7). Unsupervised learning is more effective
on synthetic data, because in real world data it is susceptible to camera noise. However, these
results show that we can learn monocular depth unsupervised without a regularization or
smoothing term. Empirically, we demonstrate an improved performance using the learned
attenuation loss in (4.9) over the regularized loss in (4.8). Qualitatively, we observe a sharper
and more refined depth prediction.

4.6.2 Semi-Supervised Learning

We can also train models in a semi-supervised fashion when we have some data with labels,
and some data without labels. For example, the KITTI dataset provides 200 labelled training
images, with some hundred thousand unlabelled frames. These losses can be combined:

Lsemi−supervised = Lsupervised +βLunsupervised (4.10)

with weighting factor, β = 0.1. During training, we sample equally from the labelled and
unlabelled datasets to form training mini-batches.

Table 4.5 compares models with no labels (unsupervised), various fractions of the labels,
through to all labels (supervised). We observe an increase in performance as the amount of
labels increases. Table 4.6 shows that the effect is less pronounced on KITTI with real-world
data, however semi-supervised learning reduces the need for pretraining on the synthetic
SceneFlow dataset.
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(a) Input left stereo image.

(b) Ground truth disparity labels.

(c) Unsupervised regression with probabilistic modelling (this work).

Fig. 4.8 Qualitative results of our unsupervised probabilistic deep learning model on the
Scene Flow dataset. We observe that our model can accurately learn the geometry of the
scene, and learns accurate disparity estimates, without labelled training data.

(a) Input left stereo image.

(b) Estimated disparity.

(c) Estimated heteroscedastic uncertainty.

Fig. 4.9 Qualitative results on the KITTI 2015 test set using supervised learning. Qualitatively,
the heteroscedastic uncertainty captures noise due to occlusion boundaries, texture-less
surfaces and erroneous regions of the disparity map.
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Model Variant Uncertainty Unsupervised Smooth Loss Error RMS > 1px > 3px > 5px

Modelling heteroscedastic uncertainty improves performance:
GC-Net Baseline (Kendall et al., 2017c) 2.51 12.4 16.9 9.34 7.22
+Heteroscedastic Uncertainty (this work) ✓ 2.16 10.5 15.0 8.76 6.85
+Heteroscedastic (grey-scale input) ✓ 2.84 14.9 16.7 9.82 7.62

Uncertainty can be used instead of a smoothing prior for unsupervised learning:
+Unsupervised ✓ 9.99 26.0 50.3 25.8 23.2
+Unsupervised+TV Loss ✓ ✓ 8.98 23.3 39.2 25.1 21.5
+Unsupervised+Heteroscedastic ✓ ✓ 8.99 24.9 38.6 25.0 21.4
+Unsupervised+Heteroscedastic+TV Loss ✓ ✓ ✓ 8.97 24.5 40.4 24.1 20.8

Semi-supervised learning can achieve reasonable performance with few labels:
+Semi-supervised (50% labels)+Heteroscedastic ✓ ✓ 2.99 15.1 19.8 12.1 9.86
+Semi-supervised (25% labels)+Heteroscedastic ✓ ✓ 3.97 15.6 21.5 13.2 10.8
+Semi-supervised (10% labels)+Heteroscedastic ✓ ✓ 4.77 16.2 26.3 15.8 12.7
+Semi-supervised (5% labels)+Heteroscedastic ✓ ✓ 5.44 16.7 27.2 17.3 14.4

Table 4.5 Results on the Scene Flow dataset (Mayer et al., 2016). Our probabilistic model
improves mean disparity error by approximately 15% over the baseline by modelling het-
eroscedastic uncertainty. For unsupervised learning, we observe that our probabilistic loss is
able to improve metrics which test fine-grained accuracy, showing that it can lead to accurate
results. With semi-supervised learning, our model can still achieve accurate results, even
with reduced availability of ground truth labels. By leveraging probabilistic modelling, we
learn from both supervised and unsupervised losses without needing smoothing priors.

4.7 Benchmarking Uncertainty

In this section we quantitatively analyse the effectiveness of the measure of heteroscedastic
uncertainty. We show that it is well calibrated and correlates strongly with metric error.

Firstly, Figure 4.10 compares precision recall curves for supervised and unsupervised
models on the Scene Flow dataset. These curves plot the disparity accuracy against varying
percentiles of uncertainty measurements. This shows that the estimate for uncertainty
accurately reflects the prediction error of the heteroscedastic neural network model, because
both curves are strictly decreasing functions. Practically speaking, we observe a very strong
correlation between metric error and uncertainty.

Secondly, Figure 4.11 shows the calibration of our supervised and unsupervised models
on the Scene Flow dataset. To form calibration plots for probabilistic regression models, we
plot the frequency of residuals against probabilities given by the predicted heteroscedastic
distribution. So, given N predicted disparities, d̂i, predicted variance, σ̂2

i , and ground truth
labels, di, we can compute the residuals, ri = |di− d̂i|. We then calculate the frequency of
these residuals which lie within probability, p, using the predicted distribution (in our case,
with the Gaussian distribution) with variance σ̂2

i . A perfectly calibrated model should behave
such that freq(p) = p which reasons that for a given probability tolerance of p, p predictions
will be correct.
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Probabilistic Pretrained Training Data Disparity Error
Modelling Loss SceneFlow Labelled Unlabelled MAE RMS > 1px > 3px > 5px
✗ Supervised ✗ 160 0 0.572 1.57 10.6 1.81 1.00
✗ Supervised ✓ 160 0 0.567 1.44 10.2 1.67 0.89
✓ Supervised ✗ 160 0 0.584 1.56 10.2 1.73 0.89
✓ Supervised ✓ 160 0 0.579 1.56 10.1 1.62 0.86

Unsupervised ✗ 0 43,552 3.20 7.81 50.4 16.3 11.1
✓ Unsupervised ✗ 0 43,552 2.55 6.50 45.1 15.0 9.44
✓ Unsupervised ✓ 0 43,552 1.77 3.77 46.1 12.6 6.91
✗ Semi-supervised ✗ 160 43,552 0.647 1.62 12.0 1.99 0.99
✓ Semi-supervised ✗ 160 43,552 0.590 1.59 11.5 1.70 0.94
✓ Semi-supervised ✓ 160 43,552 0.572 1.43 10.9 1.66 0.90

Table 4.6 KITTI 2015 validation set results (Geiger et al., 2012). The KITTI 2015 stereo
dataset dataset contains 200 labelled training images, of which we randomly hold out 40
as a validation set, and report these results here. We also use the KITTI odometry dataset,
which contains 43,552 unlabelled stereo frames. Modelling uncertainty improves results.
Naively combining supervised and unsupervised training worsens performance. However
using semi-supervised learning with our probabilistic model achieves better results, even
without pretraining on the SceneFlow dataset (Mayer et al., 2016).

We observe that our models are well calibrated with mean square errors of 0.0060 and
0.0075 for supervised and unsupervised, respectively. The uncertainty for the supervised
model is the raw, uncalibrated heteroscedastic uncertainty predicted by the model. For the
unsupervised model, we need to calibrate it to estimate variance of the disparity prediction
(measured in pixels), because the unsupervised heteroscedastic uncertainty estimates the
variance of the photometric reprojection residuals (measured in pixel intensity). To achieve
this, we apply a linear scaling factor which we tune empirically.

4.8 Conclusions

In this chapter, we investigated the problem of stereo vision and estimating disparity from a
rectified pair of stereo images. We briefly summarise the main conclusions within the three
main themes of this dissertation.

End-to-end learning. We propose a novel end-to-end deep learning architecture for
stereo vision. It is able to learn to regress disparity directly, without any additional post-
processing or regularization. We demonstrate the efficacy of our method on the KITTI
dataset, setting a new state-of-the-art benchmark.

Geometry. We show how to efficiently learn context in the disparity cost volume using
3-D convolutions. We show how to formulate it as a regression model using a soft argmin
layer. This allows us to learn disparity as a regression problem, rather than classification,
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Fig. 4.10 Precision-recall plots for supervised and unsupervised models on the Scene Flow
dataset. These curves demonstrate our heteroscedastic uncertainty can effectively capture
accuracy, as precision decreases with increasing uncertainty.
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Fig. 4.11 Uncertainty calibration plots for supervised and unsupervised models on the Scene
Flow dataset. This plot shows how well uncertainty is calibrated, where perfect calibration
corresponds to the line y = x, shown in black. We observe our estimates of uncertainty
are well calibrated with low mean squared error of 0.0060 and 0.0075 for supervised and
unsupervised models, respectively.

improving performance and enabling sub-pixel accuracy. We demonstrate that our model
learns to incorporate wider contextual information.

We show that we can use stereo geometry to learn depth with unsupervised learning. We
formulate a loss using the photometric reprojection error. We show how to use uncertainty to
combine supervised and unsupervised depth losses.

Uncertainty. We have shown how to form a stereo architecture with probabilistic deep
learning. In summary, our approach is:

• Safe. Our probabilistic neural network can reason about heteroscedastic uncertainty,
which we quantitatively show is well-calibrated.

• Accurate. Our approach improves over the performance of the baseline model.
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• Fast. We do not require sampling for probabilistic neural network inference and can
estimate uncertainty while adding negligible extra compute.

• Scalable. We show how to use unsupervised and semi-supervised learning to train our
model with unlabelled stereo data, without requiring a smoothing or regularization loss
term.
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Chapter 5

Motion

5.1 Introduction

Contemporary computer vision models are extremely effective at understanding individ-
ual images. Given enough training data, deep convolutional neural network architectures
can learn powerful representations using end-to-end supervised learning (He et al., 2016;
Krizhevsky et al., 2012). For scene understanding, models can extract rich information at a
pixel level such as semantics (Badrinarayanan et al., 2017; He et al., 2017; Long et al., 2015)
and geometry (Eigen and Fergus, 2015; Garg et al., 2016). However, there is a limit to what
we can infer from static images. To effectively understand complex and dynamic scenes we
need to reason over video.

Designing models which can learn motion and reason over temporal sequences is of
critical importance for computer vision systems. Video and temporal information allows
models to encode motion, reason over occlusions and improve temporal consistency and
stability. Additionally, many scene understanding systems are required to inform decision
making processes. Usually, these decision-making processes cannot be made in temporal
isolation and, particularly in robotics, knowledge of scene dynamics is essential.

State of the art video scene understanding systems typically process individual frames
independently (Eigen and Fergus, 2015; Gadde et al., 2017; He et al., 2017; Patraucean
et al., 2015; Valipour et al., 2017; Zhao et al., 2017; Zhou et al., 2017). Additional temporal
reasoning can be performed by filtering (Miksik et al., 2013) or with graphical models (Chen
and Corso, 2011; de Nijs et al., 2012; Hur and Roth, 2016; Tripathi et al., 2015), however
these systems are unable to be trained jointly and have significantly higher computational
requirements. Many papers have proposed to add temporal components such as recurrent
neural networks (Hochreiter and Schmidhuber, 1997) on top of semantic segmentation
encoders (Patraucean et al., 2015; Valipour et al., 2017). However, to date, none have
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Fig. 5.1 Video scene understanding. Our model jointly learns to estimate scene motion
(bottom right), depth (bottom left) and semantic segmentation (top right), in addition to
estimating ego-motion over video input. We learn semantics with supervised learning and are
able to learn geometry and motion using self-supervised learning, without labelled training
data.

been able to demonstrate improvement over equivalent per-frame models at scale. In this
chapter, we observe the same result; naive sequence-to-sequence modelling from video with
recurrent convolutional models harms semantic segmentation performance. We argue that
this is because the recurrent units propagate their state from a static location in pixel space
over time. However, in practice objects will move significantly in pixel location between
consecutive frames due to camera ego-motion and scene dynamics. These models are not
aware of this geometry and motion.

In this chapter, we introduce an end-to-end deep learning architecture for video semantic
segmentation. We jointly learn optical flow, ego-motion and depth with self-supervised
learning and semantic segmentation with supervised learning. Example outputs from the
model are shown in Figure 5.1. We propose a motion-aware gated recurrent unit (motion-
GRU) which is able to use motion and geometry to account for ego-motion and scene
dynamics when propagating state information temporally. Since labelling video frames with
semantic labels is prohibitively expensive, we show that learning geometry with unsupervised
learning can provide a powerful dense training signal for video. In summary, the novel
contributions of this chapter are;

1. showing how to account for motion when propagating recurrent states over time by
using motion recurrent units,

2. demonstrating how to provide training signal for each video frame with self-supervised
learning of motion and geometry,

3. using temporal augmentation of video data in order to learn a stable representation
over time.
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In the remainder of this chapter, we discuss these ideas and show how to train large
temporal models over long video sequences at scale. We show that our model is able to
perform video semantic segmentation with higher accuracy and temporal consistency than
equivalent per-frame models.

5.2 Video Scene Understanding

Scene understanding is the task of extracting information about the objects and their con-
textual relationships from the observed environment. Supervised deep learning is a very
effective solution to this problem from single images. In particular, many deep convolutional
encoder-decoder architectures have been shown to produce accurate and real-time solutions
to problems such as semantic segmentation, optical flow, depth and geometry estimation.

Semantic segmentation is the task of estimating the semantic class of each pixel in an
image. State of the art models use supervised deep learning (Badrinarayanan et al., 2017;
Long et al., 2015), benefiting from residual architectures (He et al., 2016; Huang et al., 2017).
Recent work has focused on improving the receptive field of features and providing them
with more context for semantic reasoning, for example using dilated convolutions (Yu and
Koltun, 2016) and pyramid spatial pooling (Zhao et al., 2017). We have also seen semantic
segmentation combined with other tasks, such as instance segmentation (He et al., 2017) and
geometry (Section 2.5) in multi-task learning settings. Probabilistic modeling and Bayesian
deep learning has also been used to understand model uncertainty in scene understanding
algorithms (Chapter 2), improving safety in practical applications.

Depth and geometry models use similar architectures to semantic segmentation, but in a
regression setting. Typically they estimate per-pixel metric depth or surface normals (Eigen
and Fergus, 2015). In (Ummenhofer et al., 2017) the authors learn geometry and motion
using supervised learning. Deep learning models can also be trained using unsupervised
learning without explicit depth labels using reprojection into stereo (Garg et al., 2016) or
temporal (Zhou et al., 2017) frames. In Chapter 4 we also show that end-to-end deep learning
can be used to estimate depth from stereo vision.

The problem of estimating motion in video is known as optical flow. Specifically, optical
flow is a measurement of each pixel’s 2D motion between subsequent video frames. It
captures motion due to the ego-motion of the camera (which can be represented by the
fundamental matrix for two frames (Hartley and Zisserman, 2000)) and motion due to scene
dynamics. State-of-the-art real-time models use deep learning (Dosovitskiy et al., 2015; Ilg
et al., 2016) and are often trained on large synthetic datasets.
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Video scene understanding, and video semantic segmentation, requires these tasks to be
performed over video. Video and temporal information allows models to encode motion,
reason about occlusion and improves temporal consistency and stability. Initial methods
approached temporal modelling as a filtering problem (Miksik et al., 2013). However, the
most popular approach to date has been to construct large graphical models that connect
different video pixels to achieve temporal consistency across frames (Chen and Corso, 2011;
de Nijs et al., 2012; Hur and Roth, 2016; Tripathi et al., 2015). For example,(Chen and Corso,
2011) used dynamic temporal links between the frames but optimized for a 2D CRF with
temporal energy terms. A 3D dense CRF across video frames is constructed in (Tripathi
et al., 2015) and optimized using mean-field approximate inference. In (Hur and Roth, 2016)
a joint model to infer flow and semantic segmentation was proposed.

Geometry, in the form of structure from motion, has been used to aid video segmentation
with random forests (Brostow et al., 2008) and Markov random fields (Tighe and Lazebnik,
2013). More recent works look at jointly modelling 2D semantics and 3D reconstruction of
scenes from video (Kundu et al., 2014; Sengupta et al., 2013).

Deep learning approaches for understanding video have been largely constrained to video
level understanding tasks. For example, 3D convolutions have been used for off-line video
classification (Karpathy et al., 2014) or activity recognition (Ji et al., 2013). Additionally,
LSTMs have been used for video recognition and captioning (Donahue et al., 2015). However
these tasks require representations at a video level, and do not need to consider scene geometry
and dynamics like in this work.

Single image semantic segmentation systems have also been adapted to video segmenta-
tion. For example, (Gadde et al., 2017; Zhu et al., 2017) both learn a representation warping
module to form a two-frame video segmentation model. Clockwork convolutional networks
(Shelhamer et al., 2016) and (Zhu et al., 2017) both propose a way of reducing computation
for video segmentation by reusing representations from single images across time.

To date, there have been a few proposals for video segmentation models over long video
sequences with deep learning (Patraucean et al., 2015; Valipour et al., 2017). They typically
append a RNN or LSTM layer after a convolutional encoder-decoder model. However, so
far every model has decreased model performance, compared to single frame non-video
baseline models (Patraucean et al., 2015; Valipour et al., 2017). We believe this work is the
first to demonstrate an improvement in performance using end-to-end deep learning over
many-frame video sequences.

Video segmentation has also been considered in an off-line setting. This is a very different
problem setting to what we consider in this chapter, as algorithms have access to future video
frames, and are not constrained to real-time inference. For example, these methods can afford
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Fig. 5.2 Overview of our video scene understanding architecture. The model efficiently
propagates information over time, outputting semantic segmentation, depth, ego-motion and
optical flow estimates from monocular video.

to use computationally expensive spatial-temporal CRFs (Kundu et al., 2016). In computer
graphics and animation this is known as rotoscoping (Miksik et al., 2017). Other related
works of note are future video frame prediction (Luc et al., 2017) and label propagation
(Budvytis et al., 2010).

Other related work is in video object segmentation and video motion segmentation. These
works are largely driven by datasets like DAVIS (Perazzi et al., 2016). This problem focuses
on segmenting a single object, or moving objects (Tokmakov et al., 2017; Tsai et al., 2016;
Vertens et al., 2017) in video. Unlike our work, explicit knowledge of semantics is not
required. Rather, algorithms commonly use one-shot learning for masks and propagate them
through video (Voigtlaender and Leibe, 2017). Similar to scene understanding, the best
approaches today segment single frames independently (Caelles et al., 2017; Khoreva et al.,
2016).

5.3 Temporal Scene Understanding Model

In this section we describe our model for video scene understanding, motion-aware recurrent
neural network and the video loss functions.

5.3.1 Architecture

Consider a sequence of images, I0, I1, ..., It . We wish to produce a representation of the
scene’s semantics, motion and geometry in real-time for time-step, t. In order to reduce the
high dimensionality of the input, we pass the image through a deep convolutional encoder to
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obtain a powerful feature representation,

xt = encoder(It). (5.1)

We choose to use the E-Net architecture for our encoder (Paszke et al., 2016) because it
achieves good segmentation performance while being computationally light-weight.

Using the feature representations from the previous and current time steps, we can then
learn to regress optical flow (the motion of features between frames). We feed both these
features through a network inspired by FlowNet simple (Dosovitskiy et al., 2015):

y f low
(t−1)→t = f lownet(xt ,x(t−1)). (5.2)

This results in an estimate of optical flow for each feature from the encoder, y f low
(t−1)→t . We

save computation by estimating flow using features shared by the semantic encoder, rather
than the raw image. This is because initial filters in flow and semantic encoders will be
very similar (Zeiler and Fergus, 2014). We also improve the representation by leveraging
multi-task learning (Caruana, 1998).

In order to improve the feature representation for the current frame, and to incorporate
motion, we concatenate the flow feature map (from the layer immediately prior to the flow
regression), y′ f low

(t−1)→t , and the image features at the current time xt . We pass these features
through some convolutional layers to learn a representation with motion-aware features:

zt = f eatures(xt ,y
′ f low
(t−1)→t) (5.3)

We implement f eatures as two residual layers (He et al., 2016) with feature size 64.
This results in a set of features, zt , at each time-step which encode image semantics and

first order motion. Note that these features only have access to input signal from time t and
t−1. We now would like to learn long term dynamics over a sequence, to model higher-order
motion and improve temporal consistency. A common approach to sequence modelling is
to use a recurrent neural network (RNN). RNNs use an internal state to propagate memory
over sequences. In particular, long-short-term-memory (LSTMs) units (Hochreiter and
Schmidhuber, 1997) have been shown to more effectively learn long dependencies. Gated
recurrent units (GRU) (Cho et al., 2014) are a variant of LSTMs which retain the gated
structure, but have a simpler internal structure making them faster to train.

Many papers have tried to place recurrent modules over features from a convolutional
encoder (Patraucean et al., 2015; Valipour et al., 2017). However, every attempt has not
improved over per-frame baseline models. We make the observation that each recurrent
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module propagates its state forward in time for each spatial location in its feature map.
However, objects in the scene rarely remain in the same location in pixel coordinates across
video frames. This is due to the dynamic nature of real world environments, and ego-motion
of the camera. This poses a problem for the recurrent state. This is because the state at time
t−1, for a given pixel coordinate (u,v), is unlikely to contain information about the same
object which likely moved to a new pixel coordinate (u′,v′) at the next time-step, t. Our
hypothesis is that the propagation of misaligned features over time causes this decrease in
performance with temporal models.

We propose to solve this problem by introducing a motion-aware GRU module. We know
the motion of each pixel from our estimate of the optical flow, y f low

(t−1)→t . Therefore we can
align features over time, such that they account for motion of the object in pixel space, by
warping the recurrent state and features using the estimate of optical flow. The full equations
of our motion-aware GRU are;

gt = sigmoid(Wg ∗ zt +Ug ∗hwarped
t−1 +bg) (5.4)

rt = sigmoid(Wr ∗ zt +Ur ∗hwarped
t−1 +br) (5.5)

h̃t = tanh(Wh ∗ zt +Uh ∗ rt ·hwarped
t−1 ) (5.6)

ht = (1−gt) ·hwarped
t−1 +gt · h̃t , (5.7)

with convolutional weights, W,U , and biases, b. We use a convolutional kernel size of 3
and add batch-normalisation after each convolution, which we omit for clarity. To form a
motion-GRU, our model is going to use its estimate of optical flow to propagate the features
temporally over the video sequence, such that the features correspond in pixel space. We do
this by resampling features according to the optical flow map using bilinear interpolation,
inspired by spatial transformer networks (STNs) (Jaderberg et al., 2015). We define this
function which warps the recurrent state, h(t−1), from time t− 1 to time t, by resampling
using the optical flow vectors, y f low

(t−1)→t , as follows:

hwarped
t = warp(h(t−1),y

f low
(t−1)→t). (5.8)

The motion-GRU then uses hwarped
t rather than ht as input. We backpropagate gradients

smoothly by implementing this warping with bilinear interpolation (Jaderberg et al., 2015).
We can stack multiple GRU layers in series to model long term temporal information. Note,
we can also form motion-RNNs and motion-LSTMs with the same change. We choose GRUs
because of their ability to gate inputs and simple implementation.
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Warping the state vectors between time-steps attempts to align features with their corre-
spondences. However, due to occlusion, it is not possible to achieve this completely, as some
features will appear and disappear with motion. We rely on the model to learn to understand
this phenomena.

Finally, we learn separate decoders to estimate pixel-wise semantic segmentation and
depth regression from the output of the motion-aware GRUs, ht .

yclass
t = decoderclass(ht), (5.9)

ydepth
t = decoderdepth(ht), (5.10)

yegomotion
t = decoderegomotion(ht), (5.11)

where class and depth decoders are comprised of a single 3× 3 convolutional layer with
feature size 32 followed by a 1× 1 convolutional layer regressing the required output
dimensions (1 for depth and number of semantic classes for class). The ego-motion decoder
uses global average pooling to pool the features, followed by a fully connected layer with
feature size 32 and a final fully connected layer regressing a 6-DoF ego-pose vector, similar
to (Zhou et al., 2017).

All layers are followed by batch normalisation and ReLU non-linearities, except for the
prediction layers. For the depth prediction layer, we constrain the output to a reasonable
positive range with 1/(α ∗ sigmoid(x)+β ), with α = 0.99 and β = 0.01 to constrain the
depth values to reasonable limits.

This model can be run continuously over video in real-time to estimate per-frame optical
flow, depth and semantic segmentation. This model is efficient and real-time because each
image is only encoded once, and recurrent states are propagated through time. It is motion-
aware from the two-frame optical flow feature input, which provides first-order motion
information, and temporally aligns features. The recurrent state memory allows the model to
remember higher order motion and reason over multiple views and deal with occlusion.

5.3.2 Loss Function

In this section, we explain how to learn semantic segmentation using supervised learning and
optical flow, ego-motion and depth with self-supervised learning1. The geometric outputs can

1We refer to this as self-supervised learning because we train the model with a regression target using our
knowledge of geometry, in the absence of human-annotated labels. However, this has also been referred to as
unsupervised learning (Garg et al., 2016; Godard et al., 2017; Zhou et al., 2017) or natural supervision (Koltun,
2017) because of the lack of labels and the inability to evaluate the performance of the model against the data.
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be considered as intermediate auxiliary outputs. They assist learning semantic segmentation
by making our model motion and geometry aware, improving the representation.

Large semantic segmentation datasets are available with thousands of densely labelled
images (Cordts et al., 2016; Lin et al., 2014). Obtaining accurate depth and flow labels is
much harder. Therefore, we use a self-supervised learning regime to learn flow and depth,
based on the photometric reprojection error and multi-view geometry. We can learn depth by
learning correspondence to stereo images (Garg et al., 2016) or subsequent temporal frames
(Zhou et al., 2017). We can learn flow by learning correspondences between temporal frames.

One possibility to learn depth is to use the estimated disparities, ydepth, from input
image, It , to warp the corresponding stereo image, It,stereo. We train on the photometric
reconstruction error to form a loss function for depth estimation:

Lstereo depth, t =
1
N ∑

i, j
|It(i, j)− It,stereo(i, j+ydepth,t(i, j))|, (5.12)

where indices i and j correspond to pixel locations in the image. The loss is averaged
across all temporal frames and pixels, N. Resampling pixel indices is performed by bilinear
interpolation (Jaderberg et al., 2015). Minimising this loss causes the model to learn disparity.
We omit the conversion from disparity to metric depth for clarity.

Alternatively, if stereo imagery is not avaliable, we can learn depth and ego-motion
from monocular video (Zhou et al., 2017). We assume the camera’s intrinsic matrix, K, is
known. To estimate pixel correspondences in monocular video, we first back-project each
homogeneous pixel coordinate, pi jt , using the predicted depth:

X = ydepth,t(pi jt)K−1 pi jt . (5.13)

We then transform these coordinates with the predicted ego-motion camera transformation
from the current frame to the previous frame using the pose vector, ŷpose

t which is represented
as a 3×4 projection matrix, T̂t→(t−1),

p̂i j(t−1) = KT̂t→(t−1)X . (5.14)

We use these coordinates to resample It−1 and train on the photometric loss:

Lmono depth, t =
1
N ∑

i, j
|It(pi jt)− I(t−1)(p̂i j(t−1))|, (5.15)

to learn geometry from monocular video. Although, this only allows us to estimate depth
and ego-motion up to some unknown scale-factor.
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To learn optical flow, we can warp the previous frame to the current frame, except now
our disparity estimates have two-degrees of freedom to represent optical flow. Again, the
loss is formed using the temporal, photometric reconstruction error:

L f low, t =
1
N ∑

i, j
|It(i, j)− I(t−1)(i+y f low i,t(i, j), j+y f low j,t(i, j)))|. (5.16)

In (5.12), (5.15) and (5.16) the photometric reprojection error function is non-informative
in homogeneous regions of the scene – referred to as the aperture problem (Hartley and
Zisserman, 2000). For example, in repetitive or texture-less surfaces, multiple disparities can
generate equally good losses. Only when considering wider context can we reason about
these regions with sufficient information. For this reason, a prior is often applied to the
loss function, typically a smoothing function, to overcome the aperture problem. Previous
literature uses some form of the total variation (TV) loss (Rudin et al., 1992) and minimises
the norm of the gradients for the predicted depth maps (Garg et al., 2016; Zhou et al., 2017).
In this work we regularise the output of both flow and depth estimates with the L1 norm of
the second order gradients:

Lsmooth, t =
λ

N ∑
i, j
|∇2ydepth,t |+ |∇2y f low,t |, (5.17)

Following (Zhou et al., 2017), we use the weighting factor of λ = 0.5.
We learn semantic segmentation with the cross entropy loss between semantic segmenta-

tion prediction and ground truth label for all semantic classes, c. Typically, frames in video
sequences are only sparsely labeled (Cordts et al., 2016). We therefore average the loss across
only pixels and frames with ground truth labels, ignoring all others. However, cross entropy
treats each pixel independently in space and time. Additionally, we would like to encourage
the network to learn a temporally consistent solution. We define a temporal consistency loss,
which penalises temporal differences in segmentation prediction, after accounting for motion
using optical flow:

Lconsist, t =
1
N ∑

i, j
|yclass,t(i, j) − yclass,(t−1)(i + y f low i,t(i, j), j + y f low j,t(i, j))|, (5.18)

where y(i, j) represents the semantic logit at pixel location i, j. The intuition here is that, if
the optical flow estimate is correct, then corresponding pixel locations should represent the
same semantic class.
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The total loss combines the individual losses: depth (5.12), flow (5.16), classification
and consistency (5.18).We average the loss over all timesteps. Because we are optimising
multiple losses, this is a multi-task learning problem (Caruana, 1998). A naive choice of
overall loss would be to sum each individual loss:

Ltotal =
1
T

T

∑
t=0

Lclass,t +L f low,t +Ldepth,t +Lsmooth,t +Lconsist,t . (5.19)

In Chapter 2 we showed that the choice of weights between the losses in deep learning
models has a very strong effect on overall performance. We use the method from Section 2.5
to automatically weigh the losses by learning weights automatically by considering each
task’s uncertainty:

L = ∑
Li∈[L0,L1,...,LN ]

1
2σ2

i
Li + logσi, (5.20)

where we estimate the task (homoscedastic) uncertainty of each loss, i, by optimising a
variable, σi. We do not learn a weight for the consistency and smoothing regularisation losses.
This formulation decreases the weight for tasks which have higher variance in their residuals.
This is important because we are learning outputs with many different units: semantics as
probability distributions, depth as a distance and optical flow in pixels. This formulation is
able to balance the losses and learn a representation which is effective for each task: flow,
depth and semantic segmentation.

5.4 Experiments

In this section we perform a number of experiments to evaluate the importance of compen-
sating for motion in our architecture in addition to other design decisions. All experiments
include all features of the model described in Section 5.3, unless otherwise stated. By default
we train over four time-steps, with a warm-up of four steps. The entire model is randomly
initialised before training.

Dataset. We use the CityScapes dataset for all experiments (Cordts et al., 2016) which
is a road scene understanding dataset. The CityScapes dataset was taken from a vehicle
in various locations around Germany. It provides 5000 stereo images with 1024× 2048
resolution (of which 2,975 are for training) with dense semantic segmentation labels. It also
provides 19 preceding and 10 future frames around each labelled frame. In order to train our
video model in GPU memory over long sequences, we sub-sample CityScapes images by a
factor of two, to 1024×512 resolution for training and testing. The original E-Net, which
we use as our encoder, is also trained on this resolution.
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The CityScapes dataset provides disparity labels from a stereo algorithm (Cordts et al.,
2016) which we use as pseudo-ground truth to compute depth error metrics. We measure
depth error in disparity, converting from depth using the provided CityScapes stereo baseline.
We use the output of FlowNet 2.0 (Ilg et al., 2016) as a reference measure of optical flow,
and the output of ORB-SLAM (Mur-Artal et al., 2015) for ego-motion, in order to evaluate
our self-supervised predictions. We evaluate ego-motion with absolute trajectory error over a
5-frame sequence.

Metrics. We evaluate semantic segmentation performance with three metrics. First, mean
intersection over union (IoU) measures the pixel wise semantic performance. It penalises
false negatives and false positives. We also evaluate the temporal consistency (TC) of the
predicted semantic labels to measure if our video model produces more consistent and
coherent results. We define temporal consistency as the percentage of pixels along an optical
flow track which have the same class prediction. We evaluate depth metrics using inverse
depth error in pixel disparity, scaled by the stereo baseline. We evaluate optical flow metrics
in pixels and ego-motion error in meters.

Optimisation. For all experiments, we use a batch size of sixteen on a machine with four
NVIDIA Titan Xp GPUs. We train with stochastic gradient descent, with 0.9 momentum
and a base learning rate of 0.1. We decay this learning rate using a polynomial schedule
defined by (Chen et al., 2015a) over 100,000 training iterations. With these learning hyper-
parameters our per-frame baseline of E-Net significantly outperforms the author’s original
implementation of the architecture (Paszke et al., 2016).

We describe three main challenges for training video scene understanding models, which
have largely prevented prior models achieving superior performance to date. We discuss
three tricks which address these challenges which we show are critical to achieving good
performance when training video scene understanding models.

5.4.1 Trick #1: Account for Motion when Propagating States.

In Section 5.3 we presented the hypothesis that naive temporal convolutional models using
recurrent units (e.g. (Patraucean et al., 2015; Valipour et al., 2017)) degraded performance
compared to equivalent per-frame models, because they are unable to account for motion. In
this section, we show that our motion-GRU improves performance over a per-frame baseline.
We use self-supervised learning with photometric reprojection error to learn a representation
of optical flow.

We also found that it was beneficial to initialise the recurrent connections such that they
are close to identity connections (He et al., 2016), similar to the work of (Gadde et al., 2017).
To achieve this, we offset the bias in the motion-GRU gates to 4.0 so that the initialisation of
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(a) Input test images from video

(b) Optical flow estimation

(c) Depth estimation

(d) Semantic segmentation

Fig. 5.3 Qualitative results for video scene understanding using our model. We observe
good performance at semantic segmentation, optical flow, ego-motion and depth estimation.
Examples are shown from validation sequences.

the sigmoid function evaluates to near 1.0. Consequently, the state will be almost entirely
forgotten, and the signal almost entirely propagated from the current time-step. The model
incrementally learns to incorporate temporal information by back-propagation.

Table 5.1 confirms that adding a standard GRU degrades both segmentation accuracy
and temporal consistency, compared to a per-frame baseline. This experiment also shows a
significant improvement in performance when using our motion-GRU. This suggests that the
motion-GRU is able to effectively propagate information temporally, by aligning features
and accounting for dynamic scene motion. In addition, our temporal consistency loss further
improves performance by explicitly enforcing temporal consistency during training.

5.4.2 Trick #2: Learn Stable Representations with Temporal Data Aug-
mentation.

In order to train effective video models with good temporal consistency, it is important to
train over long video sequences. It is essential to have a number of frames so that the model
can learn higher order dynamics and motion. Previous work only considers training over
small sequences, often with only two frames (Gadde et al., 2017), which makes it impossible
for the model to learn higher-order motion.

However, we find two problems when attempting to train on long video sequences: (1)
training over a fixed sequence length results in an unstable model, and (2) we cannot back-
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Segmentation Depth Flow
Recurrent Model IoU Consistency Err. (px) Err. (px)
per-frame baseline (no motion) 63.9% 82.3% 11.2 -
GRU 63.5% 87.4% 9.3 14.7
motion-GRU 65.6% 91.9% 9.1 12.3
motion-GRU + consistency loss 65.9% 94.2% 9.4 12.1

Table 5.1 Importance of modelling motion. We compare our motion-GRU to baseline
models and quantify the improvement due to modelling motion and increasing sequence
length. Naively adding recurrent units to a segmentation model degrades performance. The
motion-aware recurrent architecture improves performance. Our temporal consistency loss
improves results further.

propagate through long sequences given our available GPU memory. To overcome these
problems, we use temporal data augmentation.

To explain the first problem, let us consider training a model using sequences of fixed
length N, with only the frame at t = N labelled. We observe the model learns to develop a
representation which is able to make a prediction very effectively at time t = N. However,
leading up to this time, and beyond if we run the recurrent model continuously, the state
becomes unstable and diverges. Our intuition is this is because the model has not been taught
to make predictions continuously, it is only optimised to predict at time t = N. Therefore to
address this issue, we propose to randomly vary the sequence length during training, and the
position of the labelled frame, which we term temporal data augmentation.

Regarding the second issue, back-propagating gradients over video requires significant
amounts of GPU memory as feature representations from previous time-steps must be retained
in memory. To overcome this, we propose to forward propagate over long (potentially infinite)
video sequences, but only back-propagate over a shorter fixed time horizon. We refer to the
forward-only data as a warm-up as it produces a recurrent state which is used to train over the
remaining sequence data. This reduces GPU memory requirements as we can discard feature
activations from memory for all time-steps during the warm-up phase. Our final approach is
to train using a different random warm-up length for each mini-batch during training.

In Table 5.2, we compare the effect of training over different length time-steps. We
observe an improvement with training over longer time sequences, including with a random
warm-up when the sequence is too long to back-propagate in memory.

5.4.3 Trick #3: Provide a Dense Loss at Each Time-Step.

Finally, we find that it is important to provide a rich training signal over large amounts of
data to learn video scene understanding models. However, labelling frames densely in video
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Segmentation Depth Flow
Time-steps IoU Consistency Err. (px) Err. (px)
1 63.9% 82.3% 11.2 -
2 64.6% 89.1% 9.8 14.5
4 65.9% 92.3% 9.5 12.7
4 + 4 random warm-up 65.9% 94.2% 9.4 12.1

Table 5.2 Method and sequence used for training video models has a massive impact on
model performance. We observe training over longer sequences improves performance. In
addition to improving performance, we also find that randomly varying training sequence
length forces the model to learn a temporally stable representation, allowing the model to be
run recurrently for indefinite time-sequences.

Segmentation Depth Flow Egomotion
Tasks IoU Consistency Err. (px) Err. (px) Err. (m)
segmentation 63.8% 82.7% - - -
segmentation+flow 65.1% 91.3% - 14.1 -
segmentation+flow+mono depth 65.6% 93.8% 21.8** 12.3 0.39**
segmentation+flow+stereo depth 65.9% 94.2% 9.4 12.1 -

Table 5.3 Benefit of self-supervised and multi-task learning. These experiments illustrate
the improvement our approach receives from multi-task learning. Learning representations of
motion and geometry significantly improves performance of semantic segmentation. **We
can only resolve the monocular depth and ego-motion prediction up to some scale-ambiguity.
To compute accuracy, we optimise the scale factor using the validation data.

is prohibitively expensive. Therefore our third trick is to utilise self-supervised learning to
provide a training signal for each frame.

We learn optical flow using self-supervised learning with the loss in (5.16). We show
results for training depth using stereo reprojection error with the loss given by (5.12).
However, since this requires stereo data, we also show results using the loss in (5.15) to learn
depth and ego-motion using monocular temporal reprojection. For all models, we use the
probabilistic multi-task loss from Chapter 2 to balance the individual task losses.

In Table 5.3 we train models with different combinations of task losses, over a sequence
of four frames and a warm-up of four frames. We observe a large quantitative improvement
in results by modelling geometry. Learning with motion and depth features significantly
improves performance further. Providing stereo data marginally outperforms monocular
depth supervision. However, the monocular depth and ego-motion model is competitive, if
only monocular data is available for training.
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t−10 t−5 t−3 t−2 t

(a) Input video sequence

(b) Self-supervised optical flow estimation

(c) Self-supervised video depth estimation.

(d) Video semantic segmentation.

Fig. 5.4 Video semantic segmentation over a 10 frame sequence. We observe that by
learning motion and geometry and leveraging motion cues over video results in temporally
consistent segmentation with less flickering between classes in the video output. We observe
an increased ability to learn thin structures and difficult classes compared to the baseline.

Figure 5.3 shows qualitative performance. The self-supervised learning produces smooth
and robust estimates of geometry, and the model is noticeably more temporally consistent
than the per-frame E-Net baseline. Figure 5.4 shows a single 10-frame sequence.

5.5 Conclusions

In this chapter, we investigated the problem of video scene understanding. We briefly
summarise the main conclusions within the three main themes of this dissertation.

End-to-end deep learning. In this chapter, we have demonstrated an end-to-end deep
learning model to learn semantic segmentation, optical flow and scene depth from video
sequences in real-time. We show how to design recurrent units which can compensate for
ego-motion and align features over time. Through a number of experiments, we present
insights for training temporal models to form temporally consistent representations from long
video sequences. We find that end-to-end learning over long video sequences outperforms
models trained on individual frames.

Geometry. We show that explicitly modelling geometry, in the form of depth and motion,
is critical to obtain accurate feature representations over video sequences. We demonstrate
how to use geometry to align features over time, improving segmentation performance. This
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allows us to improve on the per-frame segmentation model by leveraging motion features.
Jointly representing depth, in addition to semantics, further improves model performance.

We find that in order to train over long video sequences, it is important to provide a
training signal for each frame. Labelling the semantics of each frame is too expensive.
Therefore we demonstrate that learning motion and depth with unsupervised learning is an
effective method to provide a training signal for each image in a long video sequence.

Uncertainty. While the probabilistic techniques from the previous chapters can be
applied to this model, this chapter does not explicitly explore the application of uncertainty
to the problem of video scene understanding. However, we utilise uncertainty for multi-task
learning using the technique from Section 2.5.2 to simultaneously learn depth, motion and
semantics.
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Chapter 6

Conclusions

While this thesis explores a number of core computer vision problems — scene understanding,
localisation, stereo and motion — we can observe some general conclusions.

Firstly, end-to-end deep learning has emerged as the prevailing paradigm for modelling
computer vision problems. For all of the tasks in this thesis, end-to-end learning is able to
outperform hand-engineered approaches. It reduces engineering effort and performs very
well by optimising the model with respect to the end goal.

In general, we find using representations of geometry improves the representational
power of vision models. It improves performance of models by simplifying the learning task
and allows models to learn from unsupervised learning, greatly reducing the dependence on
labelled training data.

Finally, probabilistic or Bayesian deep learning is a practical framework for quantifying
model uncertainty for vision tasks. We showed that it is important to model uncertainty for
safety-critical applications, to understand examples which are different from training data,
and small datasets where the training data is sparse.

6.1 Findings and Limitations

We briefly summarise the findings and limitations of each chapter in this thesis.
Chapter 2 presented SegNet, a deep learning framework for dense pixel-wise output. We

showed its efficacy for semantic segmentation, instance segmentation and depth regression.
We compared different techniques for upsampling and show the advantage of learning filters
and using information from the encoder. However, the model often fails to capture objects at
different scales and reason within the context of the whole image. We derived a practical
Bayesian deep learning formulation to capture aleatoric and epistemic uncertainty. We
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demonstrate how to use uncertainty to weight multiple tasks to jointly learn semantics and
geometry.

Chapter 3 introduces PoseNet, a convolutional neural network for camera pose regression.
We show that it is faster and more scalable than traditional structure from motion methods for
localisation. While it is more robust to challenging appearance changes, it cannot produce
the same level of fine-grained accuracy as classical geometry. However, explicitly using
geometric and reprojection error loss functions can improve results. Modelling uncertainty
is useful to determine metric relocalisation error and estimate loop closure. Although, this
method is only capable of relocalisation, and does not address the problem of online-learning
or localisation over video sequences.

Chapter 4 shows an end-to-end deep learning architecture for stereo disparity regression.
We show it can outperform prior hand-engineered models while being significantly more
accurate. However, the model forms the full cost volume and is not real-time. Further work
is needed, perhaps with hierarchical models, for efficient inference. Although, we find we
can use geometry for unsupervised learning by learning from photometric reprojection error.
Finally, we show uncertainty is useful to attenuate noisy training labels and to combine
semi-supervised and unsupervised learning. However, our probabilistic model assumes
uni-modal Gaussian distributions which is not always accurate.

Chapter 5 introduces deep learning models which can learn video scene understanding
over long video sequences. We show the benefits of explicitly modelling depth and motion.
In order to train models over video we find there are a number of important factors to consider.
We introduce temporal loss functions and show how to jointly learn semantic segmentation
with supervised learning, and depth and optical flow with unsupervised learning.

6.2 Applications

This work has an array of practical applications. Figure 6.1 shows technology which directly
use the ideas and software developed in this thesis, from flying drones to self-driving cars.
We briefly describe four general application areas of this work.

6.2.1 Robotics and Autonomous Vehicles

In order for autonomous robots to make their own intelligent decisions, which are trustworthy
and useful, we need to give them the ability to understand their environment. This thesis
shows that scene understanding with computer vision can provide this knowledge.
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6.2 Applications

(a) Autonomous vehicles. (b) Smart cities and intelligent
surveillance.

(c) Autonomous unmanned
aerial vehicles.

(d) Demonstration of the algorithms from Chapter 5 on a self-driving car in Cambridge, UK.

Fig. 6.1 Applications of the technology developed in this thesis. Algorithms and software
which was written as part of this thesis are inside many of today’s products, including these
four examples. (a) shows a prototype autonomous vehicle running SegNet for real-time
scene understanding. (b) shows a smart-city sensor by Vivacity (Vivacity, 2017) running
software from this thesis. (c) shows a prototype drone from Skydio (Skydio, 2017) using
algorithms and software from Chapter 2 to understand scene semantics and geometry. Finally,
(d) demonstrates the algorithms from Chapter 5 operating in real-time on a self-driving car in
Cambridge, UK.
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Understanding the scene’s geometry and semantics is a fundamental task for autonomous
robots. This provides necessary information to navigate, avoid obstacles and to interact
intelligently with the world. The ideas from Chapter 2 and Chapter 5 allow us to build such a
system with end-to-end deep learning.

Cameras are attractive sensors because they are cheap, they are passive and require low-
power. The algorithms presented in this thesis can operate in real-time on robotic platforms
with relatively cheap cameras and computation. For example, on autonomous vehicles,
self-driving cars, drones and domestic robots (Kendall et al., 2018, 2014; McAllister et al.,
2017).

In Figure 6.1 (d), we demonstrate the algorithms from Chapter 5 operating in real-time
on a prototype self-driving car on public UK roads in Cambridge. The algorithm is computed
at 25Hz on a NVIDIA Drive PX2 computer using a 256 × 512 pixel image. We observe
stable predictions of semantics, motion and geometry across a wide variety of road scenes in
varying weather conditions.

The challenges for this application are developing a scene understanding representation
which is robust, and generalises world-wide. For self-driving cars, it is paramount that the
computer vision system is reliable in all conditions and across all edge-cases. The ideas about
using geometry will be beneficial here, to leverage self-supervision to learn more effective
representations from larger amounts of data. It is also critical these systems understand their
uncertainty to make safe policy decisions based on well-founded information.

6.2.2 Smart-Cities and Surveillance

In addition to robotics, computer vision algorithms are useful to understand scenes from fixed
cameras. One can imagine smart city infrastructure, or internet-of-things (IOT) devices which
would benefit from visual scene understanding. Semantic and instance video segmentation
are important technologies. These could have applications for security monitoring, collecting
behaviour statistics and providing analytics of the world in real-time.

6.2.3 Medical Imaging

Computer vision is proving successful in advanced diagnosis of medical images (Ronneberger
et al., 2015). However, obtaining training data is difficult and it is often biased against rare
conditions and diseases. Therefore, it is important to account for uncertainty when making a
diagnosis, with many of the ideas in this thesis very useful for this task. Medical imaging
also often involves 3-D data with images obtained in voxels. Geometry may assist deep
neural networks to learn more efficiently and be more effective in this domain.

164



6.3 Future Work

6.2.4 Augmented Reality

Augmented reality provides an improved interface to data by overlaying it on the world
we see. For example, wearable technology like glasses can overlay information such as
advertising on shop façades, directions on the street or Pokémon to play with.

Augmented reality systems require accurate depth and semantic scene understanding.
Global camera pose estimation is also of interest to overlay virtual worlds. Ideas from
Chapter 3 for localisation and other ideas in this thesis about learning geometry can be used.
Applications include entertainment, education or improving the accessibility of information.

6.3 Future Work

To conclude this thesis, there are many aspects of important future work which we would like
to highlight. As is typical with any research, this thesis raises more questions than answers.
Improvements to the individual algorithms have been discussed within the body of this work.
However, at a high level we would like to highlight the following themes for future research
which are particularly exciting.

6.3.1 Learning Geometry with Memory

A great challenge in artificial intelligence research is learning representations with memory
(Graves et al., 2014). Today, this is typically approached in language and sequence modelling
fields (Weston et al., 2014). However, we believe geometry offers an excellent setting to learn
memory, because we can learn geometry with unsupervised learning. An example, is the
problem of simultaneous localisation and mapping (Durrant-Whyte and Bailey, 2006), where
a model must learn to build a map while experiencing a world. This is a task the human brain
performs very well (Moser et al., 2008; O’Keefe and Nadel, 1978). Learning this with a
computer vision system remains a great challenge for the best geometry and memory models.

6.3.2 More Flexible Uncertainty Distributions

This thesis has argued that understanding uncertainty is essential for safe computer vision
systems. However, Bayesian deep learning often underestimates uncertainty (Chapter 2). It
is important we improve the calibration of this uncertainty. In this thesis, one assumption
all probabilistic models made was that the probability distribution is Gaussian. In reality,
this may not be a valid claim. One important area of future research is learning more
flexible distributions and multi-modal distributions which can represent the real-world more
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effectively. For example, multi-modal predictions are particularly important for predicting
the future, which we describe next.

6.3.3 Predicting the Future

This thesis has addressed algorithms for understanding semantics and geometry from both
individual images and video sequences. However, another large problem which has not been
mentioned so far is, what is going to happen next? Predicting scene dynamics is an important
problem to solve in computer vision, especially for applications in robotics. While there is
some initial work in this area (Luc et al., 2017), this problem would benefit from the three
themes of this thesis; end-to-end deep learning, geometry and uncertainty.

6.3.4 Learning to Act

Finally, the purpose of a brain is for movement (Wolpert and Ghahramani, 2000). Therefore,
an interesting question is what is the point of learning these representations of semantics,
motion and geometry? Ultimately, these algorithms are useful to learn representations for
visuomotor control (systems that reason from sensory input to control output). Today, most
visuomotor algorithms are naive and do not consider geometry and uncertainty (Kendall
et al., 2018; Levine et al., 2016). Benefits could be observed from leveraging the ideas in this
thesis about geometry and uncertainty, while learning end-to-end from perception to action.

166



References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). Savannah, Georgia, USA.

Achtelik, M., Bachrach, A., He, R., Prentice, S., and Roy, N. (2009). Stereo vision and
laser odometry for autonomous helicopters in gps-denied indoor environments. In SPIE
Defense, security, and sensing, pages 733219–733219. International Society for Optics
and Photonics.

Agrawal, P., Carreira, J., and Malik, J. (2015). Learning to see by moving. In Proceedings of
the IEEE International Conference on Computer Vision, pages 37–45.

Altmann, S. L. (2005). Rotations, quaternions, and double groups. Courier Corporation.

Anderson, C. H., Van Essen, D. C., and Olshausen, B. A. (2005). Directed visual attention
and the dynamic control of information flow.

Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J. (1999). Optics: ordering points to
identify the clustering structure. In ACM Sigmod record, volume 28, pages 49–60. ACM.

Babenko, A. and Lempitsky, V. (2015). Aggregating deep convolutional features for image
retrieval. In International Conference on Computer Vision (ICCV).

Babenko, A., Slesarev, A., Chigorin, A., and Lempitsky, V. (2014). Neural codes for image
retrieval. In European Conference on Computer Vision.

Badrinarayanan, V., Handa, A., and Cipolla, R. (2015). Segnet: A deep convolutional encoder-
decoder architecture for robust semantic pixel-wise labelling. CoRR, abs/1505.07293.

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: A deep convolutional
encoder-decoder architecture for scene segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate. In ICLR 2015.

Bai, M. and Urtasun, R. (2017). Deep watershed transform for instance segmentation. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2858–2866.
IEEE.

Barlow, H. B. (1989). Unsupervised learning. Neural computation, 1(3):295–311.

167



References

Barnard, S. T. and Fischler, M. A. (1982). Computational stereo. ACM Computing Surveys,
14(4):553–572.

Baxter, J. et al. (2000). A model of inductive bias learning. J. Artif. Intell. Res.(JAIR),
12(149-198):3.

Belagiannis, V., Rupprecht, C., Carneiro, G., and Navab, N. (2015). Robust optimization
for deep regression. In International Conference on Computer Vision (ICCV), pages
2830–2838. IEEE.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and
new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
35(8):1798–1828.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Blake, A., Curwen, R., and Zisserman, A. (1993). A framework for spatiotemporal control in
the tracking of visual contours. International Journal of Computer Vision, 11(2):127–145.

Blei, D. M. and Jordan, M. I. (2006). Variational inference for dirichlet process mixtures.
Bayesian analysis, 1(1):121–143.

Bleyer, M., Rhemann, C., and Rother, C. (2011). PatchMatch Stereo-Stereo Matching with
Slanted Support Windows. Bmvc, i(1):14.1–14.11.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in
neural network. In ICML.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer.

Brostow, G. J., Fauqueur, J., and Cipolla, R. (2009). Semantic object classes in video: A
high-definition ground truth database. Pattern Recognition Letters, 30(2):88–97.

Brostow, G. J., Shotton, J., Fauqueur, J., and Cipolla, R. (2008). Segmentation and recognition
using structure from motion point clouds. In European conference on computer vision,
pages 44–57. Springer.

Budvytis, I., Badrinarayanan, V., and Cipolla, R. (2010). Label propagation in complex video
sequences using semi-supervised learning. In BMVC, volume 2257, pages 2258–2259.

Bulo, Rota, S., and Kontschieder, P. (2014). Neural decision forests for semantic image
labelling. In CVPR.

Caelles, S., Maninis, K.-K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., and Van Gool, L.
(2017). One-shot video object segmentation. In CVPR 2017. IEEE.

Calonder, M., Lepetit, V., and Strecha, C. (2010). BRIEF : Binary Robust Independent
Elementary Features. In European Conference on Computer Vision (ECCV).

Caruana, R. (1998). Multitask learning. In Learning to learn, pages 95–133. Springer.

168



References

Chen, A. Y. and Corso, J. J. (2011). Temporally consistent multi-class video-object segmen-
tation with the video graph-shifts algorithm. In Applications of Computer Vision (WACV),
2011 IEEE Workshop on, pages 614–621. IEEE.

Chen, D. M., Baatz, G., Köser, K., Tsai, S. S., Vedantham, R., Pylvänäinen, T., Roimela,
K., Chen, X., Bach, J., Pollefeys, M., et al. (2011). City-scale landmark identification on
mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 737–744. IEEE.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2015a). Semantic
image segmentation with deep convolutional nets and fully connected crfs. In ICLR.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2016). Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. arXiv preprint arXiv:1606.00915.

Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H. (2017). Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587.

Chen, Z., Sun, X., Wang, L., Yu, Y., and Huang, C. (2015b). A deep visual correspondence
embedding model for stereo matching costs. In Proceedings of the IEEE International
Conference on Computer Vision, pages 972–980.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078.

Choudhary, S. and Narayanan, P. J. (2012). Visibility probability structure from sfm datasets
and applications. In European Conference on Computer Vision.

Ciodaro, T., Deva, D., De Seixas, J., and Damazio, D. (2012). Online particle detection
with neural networks based on topological calorimetry information. In Journal of physics:
conference series, volume 368, page 012030. IOP Publishing.

Cipolla, R., Battiato, S., and Farinella, G. M. (2010). Computer Vision: Detection, recognition
and reconstruction, volume 285. Springer.

Clark, R., Wang, S., Markham, A., Trigoni, N., and Wen, H. (2017). Vidloc: 6-dof video-clip
relocalization. arXiv preprint arXiv:1702.06521.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th international
conference on Machine learning, pages 160–167. ACM.

Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on pattern analysis and machine intelligence, 24(5):603–619.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U.,
Roth, S., and Schiele, B. (2016). The cityscapes dataset for semantic urban scene under-
standing. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

169



References

Cummins, M. and Newman, P. (2008). FAB-MAP: Probabilistic localization and mapping in
the space of appearance. The International Journal of Robotics Research, 27(6):647–665.

Dai, J., He, K., and Sun, J. (2016). Instance-aware semantic segmentation via multi-task
network cascades. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3150–3158.

De Brabandere, B., Neven, D., and Van Gool, L. (2017). Semantic instance segmentation
with a discriminative loss function. arXiv preprint arXiv:1708.02551.

de Nijs, R., Ramos, S., Roig, G., Boix, X., Van Gool, L., and Kühnlenz, K. (2012). On-line
semantic perception using uncertainty. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 4185–4191. IEEE.

Delhumeau, J., Gosselin, P.-H., Jégou, H., and Pérez, P. (2013). Revisiting the VLAD image
representation. In ACM Multimedia, Barcelona, Spain.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-
scale hierarchical image database. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255. IEEE.

Denker, J. and LeCun, Y. (1991). Transforming neural-net output levels to probability
distributions. In Advances in Neural Information Processing Systems 3. Citeseer.

Der Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? does it matter?
Structural Safety, 31(2):105–112.

Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko,
K., and Darrell, T. (2015). Long-term recurrent convolutional networks for visual recog-
nition and description. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2625–2634.

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der Smagt,
P., Cremers, D., and Brox, T. (2015). Flownet: Learning optical flow with convolutional
networks. In Proceedings of the IEEE International Conference on Computer Vision,
pages 2758–2766.

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping: part i.
IEEE robotics & automation magazine, 13(2):99–110.

Egnal, G., Mintz, M., and Wildes, R. P. (2004). A stereo confidence metric using single view
imagery with comparison to five alternative approaches. Image and vision computing,
22(12):943–957.

Eigen, D. and Fergus, R. (2015). Predicting depth, surface normals and semantic labels with a
common multi-scale convolutional architecture. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2650–2658.

Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth map prediction from a single image
using a multi-scale deep network. In Advances in neural information processing systems,
pages 2366–2374.

170



References

Einecke, N. and Eggert, J. (2015). A multi-block-matching approach for stereo. In 2015
IEEE Intelligent Vehicles Symposium (IV), pages 585–592. IEEE.

Engel, J., Schöps, T., and Cremers, D. (2014). LSD-SLAM: Large-scale direct monocular
slam. In European Conference on Computer Vision, pages 834–849. Springer.

Everingham, M., Eslami, S. A., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A.
(2015). The pascal visual object classes challenge: A retrospective. International journal
of computer vision, 111:98–136.

Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2012). Scene parsing with multiscale
feature learning, purity trees, and optimal covers. In ICML.

Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013). Learning hierarchical features
for scene labeling. IEEE PAMI, 35(8):1915–1929.

Faugeras, O. (1993). Three-dimensional computer vision: a geometric viewpoint. MIT press.

Flynn, J., Neulander, I., Philbin, J., and Snavely, N. (2016). DeepStereo: Learning to Predict
New Views from the World’s Imagery. CVPR.

Fukushima, K. (1979). Neural network model for a mechanism of pattern recognition
unaffected by shift in position - Neocognitron. Trans. IECE, J62-A(10):658–665.

Gadde, R., Jampani, V., and Gehler, P. V. (2017). Semantic video cnns through representation
warping. In IEEE International Conference on Computer Vision (ICCV). IEEE.

Gal, Y. (2016). Uncertainty in Deep Learning. PhD thesis, University of Cambridge.

Gal, Y. and Ghahramani, Z. (2015). Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. arXiv:1506.02142.

Gal, Y. and Ghahramani, Z. (2016). Bayesian convolutional neural networks with Bernoulli
approximate variational inference. ICLR workshop track.

Gal, Y., Hron, J., and Kendall, A. (2017). Concrete dropout. In Advances in Neural
Information Processing Systems (NIPS).

Garg, R., Kumar, B. V., Carneiro, G., and Reid, I. (2016). Unsupervised cnn for single view
depth estimation: Geometry to the rescue. In European Conference on Computer Vision,
pages 740–756. Springer.

Gatta, C., Romero, A., and van de Weijer, J. (2014). Unrolling loopy top-down semantic
feedback in convolutional deep networks. In CVPR Workshop on Deep Vision.

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving? the
kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recognition
(CVPR).

Geiger, A., Roser, M., and Urtasun, R. (2010). Efficient large-scale stereo matching. In
Asian conference on computer vision, pages 25–38. Springer.

171



References

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature,
521(7553):452–459.

Gibson, E. J. and Walk, R. D. (1960). The "visual cliff". Scientific American, 202(4):64–71.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587.

Godard, C., Mac Aodha, O., and Brostow, G. J. (2017). Unsupervised monocular depth
estimation with left-right consistency. In CVPR.

Gong, Y., Wang, L., Guo, R., and Lazebnik, S. (2014). Multi-scale orderless pooling of deep
convolutional activation features. In European Conference on Computer Vision.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Gould, S., Fulton, R., and Koller, D. (2009). Decomposing a scene into geometric and
semantically consistent regions. In ICCV, pages 1–8. IEEE.

Grangier, D., Bottou, L., and Collobert, R. (2009). Deep convolutional networks for scene
parsing. In ICML Workshop on Deep Learning.

Graves, A. (2011). Practical variational inference for neural networks. In Advances in Neural
Information Processing Systems, pages 2348–2356.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv preprint
arXiv:1410.5401.

Guney, F. and Geiger, A. (2015). Displets: Resolving stereo ambiguities using object
knowledge. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4165–4175.

Gupta, S., Arbelaez, P., and Malik, J. (2013). Perceptual organization and recognition of
indoor scenes from rgb-d images. In CVPR, pages 564–571. IEEE.

Gupta, S., Girshick, R., Arbeláez, P., and Malik, J. (2014). Learning rich features from rgb-d
images for object detection and segmentation. In European Conference on Computer
Vision, pages 345–360. Springer.

Guynn, J. (2015). Google photos labeled black people ’gorillas’. USA Today.

Haeusler, R., Nair, R., and Kondermann, D. (2013). Ensemble Learning for Confidence
Measures in Stereo Vision. Computer Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, pages 305–312.

Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., and Malik, J. (2011). Semantic contours
from inverse detectors. In Computer Vision (ICCV), 2011 IEEE International Conference
on, pages 991–998. IEEE.

Hariharan, B., Arbeláez, P., Girshick, R., and Malik, J. (2015). Hypercolumns for object
segmentation and fine-grained localization. In CVPR, pages 447–456.

172



References

Hartley, R. and Zisserman, A. (2000). Multiple View Geometry in Computer Vision. Cam-
bridge University Press, ISBN: 0521540518, first edition.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask R-CNN. In Proceedings of
the International Conference on Computer Vision (ICCV).

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. arXiv preprint arXiv:1502.01852.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 770–778.

He, X., Zemel, R. S., and Carreira-Perpiñán, M. Á. (2004). Multiscale conditional random
fields for image labeling. In Computer vision and pattern recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE computer society conference on, volume 2, pages II–II.
IEEE.

Heise, P., Jensen, B., Klose, S., and Knoll, A. (2015). Fast Dense Stereo Correspondences by
Binary Locality Sensitive Hashing. ICRA, pages 1–6.

Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., and Denk, W.
(2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina.
Nature, 500(7461):168.

Hermans, A., Floros, G., and Leibe, B. (2014). Dense 3D Semantic Mapping of Indoor
Scenes from RGB-D Images. In ICRA.

Hernández-Lobato, J. M., Li, Y., Hernández-Lobato, D., Bui, T., and Turner, R. E. (2016).
Black-box alpha divergence minimization. In Proceedings of The 33rd International
Conference on Machine Learning, pages 1511–1520.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Signal Processing
Magazine, 29(6):82–97.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554.

Hirschmuller, H. (2005). Accurate and efficient stereo processing by semi-global matching
and mutual information. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 2, pages 807–814. IEEE.

Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual information.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):328–341.

Hirschmüller, H. and Scharstein, D. (2007). Evaluation of Cost Functions for Stereo Matching.
In 2007 IEEE Conference on Computer Vision and Pattern Recognition.

Hoaglin, D. C., Mosteller, F., and Tukey, J. W. (1983). Understanding robust and exploratory
data analysis, volume 3. Wiley New York.

173



References

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Hong, S., Noh, H., and Han, B. (2015). Decoupled deep neural network for semi-supervised
semantic segmentation. CoRR, abs/1506.04924.

Horn, B. K. and Brooks, M. J. (1989). Shape from shading. MIT press.

Hu, X. and Mordohai, P. (2012). A quantitative evaluation of confidence measures for stereo
vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11):2121–
2133.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.

Huang, G., Liu, Z., Weinberger, K. Q., and van der Maaten, L. (2016). Densely connected
convolutional networks. arXiv preprint arXiv:1608.06993.

Huang, J.-T., Li, J., Yu, D., Deng, L., and Gong, Y. (2013). Cross-language knowledge
transfer using multilingual deep neural network with shared hidden layers. In Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages
7304–7308. IEEE.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154.

Huber, P. J. (2011). Robust statistics. Springer.

Hur, J. and Roth, S. (2016). Joint optical flow and temporally consistent semantic segmenta-
tion. In European Conference on Computer Vision, pages 163–177. Springer.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., and Brox, T. (2016). Flownet 2.0:
Evolution of optical flow estimation with deep networks. CoRR, abs/1612.01925.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167.

Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015). Spatial transformer networks. In
Advances in Neural Information Processing Systems, pages 2017–2025.

Jamaludin, A., Kadir, T., and Zisserman, A. (2016). Spinenet: automatically pinpointing
classification evidence in spinal mris. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 166–175. Springer.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009). What is the best multi-stage
architecture for object recognition? In ICCV, pages 2146–2153.

Jason, J. Y., Harley, A. W., and Derpanis, K. G. (2016). Back to basics: Unsupervised
learning of optical flow via brightness constancy and motion smoothness. In Computer
Vision–ECCV 2016 Workshops, pages 3–10. Springer.

174



References

Jégou, H., Douze, M., Schmid, C., and Pérez, P. (2010). Aggregating local descriptors into
a compact image representation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3304–3311.

Jegou, H., Perronnin, F., Douze, M., Sánchez, J., Perez, P., and Schmid, C. (2012). Aggregat-
ing local image descriptors into compact codes. IEEE transactions on pattern analysis
and machine intelligence, 34(9):1704–1716.

Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., and Bengio, Y. (2016). The one hundred
layers tiramisu: Fully convolutional densenets for semantic segmentation. arXiv preprint
arXiv:1611.09326.

Ji, S., Xu, W., Yang, M., and Yu, K. (2013). 3d convolutional neural networks for human
action recognition. IEEE transactions on pattern analysis and machine intelligence,
35(1):221–231.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and
Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014).
Large-scale video classification with convolutional neural networks. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, pages 1725–1732.

Karsch, K., Liu, C., and Kang, S. B. (2012). Depth extraction from video using non-
parametric sampling. In European Conference on Computer Vision, pages 775–788.
Springer.

Kellman, P. J. and Arterberry, M. E. (2006). Infant visual perception. Handbook of child
psychology.

Kendall, A., Badrinarayanan, V., and Cipolla, R. (2017a). Bayesian SegNet: Model uncer-
tainty in deep convolutional encoder-decoder architectures for scene understanding. In
Proceedings of the British Machine Vision Conference (BMVC).

Kendall, A. and Cipolla, R. (2016). Modelling uncertainty in deep learning for camera
relocalization. In Proceedings of the International Conference on Robotics and Automation
(ICRA).

Kendall, A. and Cipolla, R. (2017). Geometric loss functions for camera pose regression with
deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Kendall, A. and Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for
computer vision? In Advances in Neural Information Processing Systems (NIPS).

Kendall, A., Gal, Y., and Cipolla, R. (2017b). Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. arXiv preprint arXiv:1705.07115.

Kendall, A., Grimes, M., and Cipolla, R. (2015). Posenet: A convolutional network for
real-time 6-dof camera relocalization. In Proceedings of the International Conference on
Computer Vision (ICCV).

175



References

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., Lam, V.-D., Bewley, A.,
and Shah, A. (2018). Learning to drive in a day. arXiv preprint arXiv:1807.00412.

Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., Bachrach, A., and Bry,
A. (2017c). End-to-end learning of geometry and context for deep stereo regression. In
Proceedings of the International Conference on Computer Vision (ICCV).

Kendall, A. G., Salvapantula, N. N., and Stol, K. A. (2014). On-board object tracking control
of a quadcopter with monocular vision. In Unmanned Aircraft Systems (ICUAS), 2014
International Conference on, pages 404–411. IEEE.

Khoreva, A., Perazzi, F., Benenson, R., Schiele, B., and Sorkine-Hornung, A. (2016).
Learning video object segmentation from static images. arXiv preprint arXiv:1612.02646.

Kiefer, J., Wolfowitz, J., et al. (1952). Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics, 23(3):462–466.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan,
K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, page
201611835.

Klaus, A., Sormann, M., and Karner, K. (2006). Segment-based stereo matching using
belief propagation and a self-adapting dissimilarity measure. Proceedings - International
Conference on Pattern Recognition, 3:15–18.

Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small ar workspaces.
In Mixed and Augmented Reality, IEEE and ACM International Symposium on, pages
225–234. IEEE.

Koenderink, J. J. (1990). Solid shape. MIT Press.

Koenderink, J. J. and Van Doorn, A. J. (1991). Affine structure from motion. JOSA A,
8(2):377–385.

Kokkinos, I. (2016). Ubernet: Training auniversal’convolutional neural network for low-,
mid-, and high-level vision using diverse datasets and limited memory. arXiv preprint
arXiv:1609.02132.

Kolmogorov, V. and Zabih, R. (2001). Computing visual correspondences with occlusions
using graph cuts. In International Conference on Computer Vision (ICCV).

Koltun, V. (2011). Efficient inference in fully connected crfs with gaussian edge potentials.
In In: NIPS (2011.

Koltun, V. (2017). Learning to act with natural supervision.

Kontschieder, P., Bulo, S. R., Bischof, H., and Pelillo, M. (2011). Structured class-labels in
random forests for semantic image labelling. In ICCV, pages 2190–2197. IEEE.

176



References

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

Kundu, A., Li, Y., Dellaert, F., Li, F., and Rehg, J. M. (2014). Joint semantic segmentation
and 3d reconstruction from monocular video. In European Conference on Computer
Vision, pages 703–718. Springer.

Kundu, A., Vineet, V., and Koltun, V. (2016). Feature space optimization for semantic video
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3168–3175.

Ladicky, L., Shi, J., and Pollefeys, M. (2014). Pulling things out of perspective. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
89–96.
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